Unit 1-electricity

1.1 Electric current

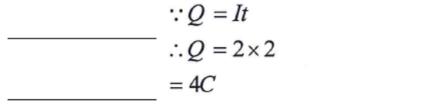
Learning Objectives:

- a) define electric current as the flow of charge carriers.
- b)) solve problems using Q = It . (Where Q=Ne, N is the number of electrons)
- c) define the coulomb.
- d) derive and use, for a current-carrying conductor, the expression *I* = *Anve*, where *n* is the number density of charge carriers.
- e) solve problems involving the mean drift velocity of charge carriers.

Useful links

• Electric Current

https://www.youtube.com/watch?v=9OchTQ4Qfik
https://www.youtube.com/watch?v=rkgf0T7RWZY


Relation between current and drift velocity

https://www.youtube.com/watch?v=5HFRs8X4gU0

Past GED Questions

1.	An electric current of (5A) is equivalent to	:		
	□ 5 J/C	□ 5 V/C		5 C/sec
	5 C/sec	☐ 5 W/sec		
2.	One Ampere is equal to:			
	C ² . s	C.s		C/s
ว	S/C ²	C/s		
3.	what is meant by saying that the electrical current equals (5A)?			
	The amount of charge of 5 coulombs that passes a point within 1 seconds.			
	5 Coulombs of charge is passing through a conductor in one second			

4. A wire carries a st (2s)?	teady current of (2A)	. How many	electrons	passes t	hrough	the wire in (2 marks)

$$n = \frac{Q}{q}$$

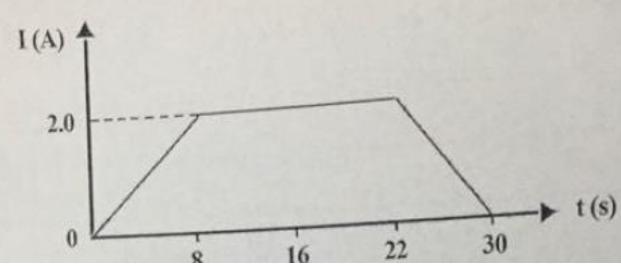
$$\therefore n = \frac{4}{1.6 \times 10^{-19}}$$
$$= 2.5 \times 10^{19}$$

The rate of flow of electric charges through a conductor is called:

electric current

5.

electric power


potential difference

- ohmic resistance
- electric current

6.	What is the definition of an electric current in an electrical circuit		
		The flow rate of positive ions.	
		The flow rate of free electrons.	
		The flow rate of free positive charges.	
_		The flow rate of both positive and negative particles.	
/ .		The flow rate of free electrons.	

8.

The variation of current through a point with time is shown in the figure below.

Calculate the charge that flows through the point from (8 s) to (30 s). [2 marks]

The charge flow = the area under the graph.

From 8s to 22s, the area = $2 \times (22-8) = 2 \times 14 = 28$ C From 22s to 30s, the area = $\frac{1}{2} \times 8 \times 2 = 8$ C

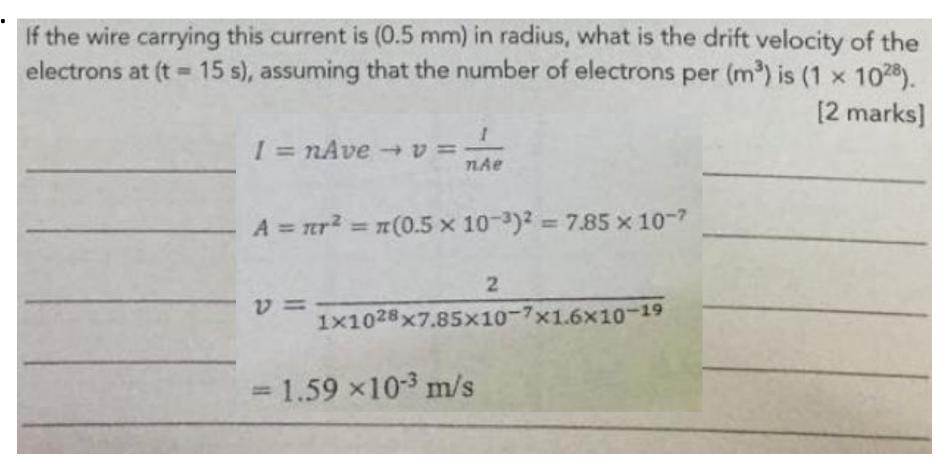
.. Total area = 8 +28 = 36 C

1/2

-

9.	"The flow of electric charge carriers through a point in (1 s) in which there is a constant current of (1 A)" is defined as:			
		Watt		Ohm
		Volt		Coulomb
		Coulomb		

A Copper wire has a radius of $(4.85 \times 10^{-4} \text{ m})$ carries a current of (1 A) . If the Copper wire
contains (8.4×10^{28}) free electrons/m ³), the electron drift velocity is approximately:


□ 1 × 10⁻²³ m/s

1 ×10⁻⁴ m/s

☐ 1 ×10³ m/s

 \bigcirc 1 × 10⁸ m/s

11.

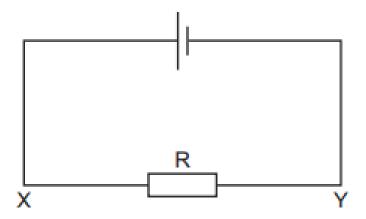
12. A wire carries a current of 2.0 amperes for 1.0 hour.

How many electrons pass a point in the wire in this time?

- A 1.2 × 10⁻¹⁵
- **B** 7.2×10^3
- $C 1.3 \times 10^{19}$
- 13. **D** 4.5×10^{22}

The current in a resistor is 8.0 mA.

What charge flows through the resistor in 0.020s?


A 0.16 mC

- **B** 1.6 mC
- C 4.0 mC
- D 0.40 C

D 4.5×10^{22}

A 0.16 mC

14. The current in the circuit is 4.8 A.

What is the rate of flow and the direction of flow of electrons through the resistor R?

- A $3.0 \times 10^{19} \, \text{s}^{-1}$ in direction X to Y
- **B** $6.0 \times 10^{18} \, \text{s}^{-1}$ in direction X to Y
- C $3.0 \times 10^{19} \, \text{s}^{-1}$ in direction Y to X
- **D** $6.0 \times 10^{18} \, \text{s}^{-1}$ in direction Y to X
 - C $3.0 \times 10^{19} \,\mathrm{s}^{-1}$ in direction Y to X

• 15. Estimate the average drift speed of conduction electrons in a copper wire of cross section area 2.5 X 10-7 m2 carrying a current of 2.7A. Assume the density of conduction electrons to be 9 x 10₂₈ m3.

Ans: 7.5 x10-4 m/s

Textbook questions

Now it's your turn

- 1 Calculate the current when a charge of 240 C passes a point in a circuit in a time of 2 minutes.
- In a silver-plating experiment, 9.65 x 10⁴C of charge is needed to deposit a certain mass of silver. Calculate the time taken to deposit this mass of silver when the current is 0.20A.
- 3 The current in a wire is 200 mA. Calculate:
 - (a) the charge which passes a point in the wire in 5 minutes,
 - (b) the number of electrons needed to carry this charge (electron charge e = −1.6 x 10⁻¹⁹C).

Now it's your turn

4 The average drift speed in a metal wire is 6.5 x 10⁻⁴m s⁻¹ when the current is 0.80A. The diameter of the wire is 0.50mm. Calculate the number of 'free' electrons per unit volume in the wire.

- 1 2.0 A
- $2 4.8 \times 10^5 s$
- 3 (a) 60 C
 - **(b)** 3.8×10^{20}
- 4 $3.9 \times 10^{28} \,\mathrm{m}^{-3}$