

امتحان دبلوم التعليم العام للمدارس الخاصة (ثنائية اللغة) للعام الدراسي ١٤٤٠/١٤٣٩ هـ - ٢٠١٨ / ٢٠١٩ م الدور الأول - الفصل الدراسي الأول

الكيمياء	:ઢંગધા	•	تنبيه:
----------	--------	---	--------

• زمن الإجابة: ثلاث ساعات.

• الأسئلة في (١٦) صفحة.

• الإجابة في الورقة نفسها.

تعليمات مهمة:

- يجب الحضور إلى قاعة الامتحان قبل عشر دقائق على الأقل من بدء زمن الامتحان.
 - يجب إحضار أصل ما يثبت الهوية وإبرازها للعاملين بالامتحانات.
- يجب الالتزام بالزي (الدشداشة البيضاء والمصر أو الكمة للذكور) والزى المدرسي للطالبات ، ويستثنى من ذلك الدارسون من غير العمانيين بشرط الالتزام بالذوق العام، ومنع على جميع المتقدمات ارتداء النقاب داخل المركز وقاعات الامتحان.
- يحظر على الممتحنين اصطحاب الهواتف النقالة وأجهزة النداء الآلي وآلات التصوير والحواسيب الشخصية والساعات الرقمية الذكية والآلات الحاسبة ذات الصفة التخزينية والمجلات والصحف والكتب الدراسية والدفاتر والمذكرات والحقائب اليدوية والآلات الحادة أو الأسلحة أياً كان نوعها وأى شيء له علاقة بالامتحان.
- يجب على الممتحن الامتثال لإجراءات التفتيش داخل المركز طوال أيام الامتحان.

- يجب على الممتحن التأكد من استلام دفتر امتحانه، مغلفاً بغلاف
بلاستيكي شفاف وغير ممزق ، وهو مسؤول عنه حتى يسلمه لمراقبي
اللجنة بعد الانتهاء من الإجابة.
- يجب الالتزام بضوابط إدارة امتحانات دبلوم التعليم العام وما في
مستواه وأية مخالفة لهذه الضوابط تعرضك للتدابير والإجراءات
والعقوبات المنصوص عليها بالقرار الوزاري رقم ٥٨٨ / ٢٠١٥.
- يقوم المتقدم بالإجابة عن أسئلة الامتحان المقالية بقلم الحبر (الأزرق
أو الأسود). ٰ
 يقوم المتقدم بالإجابة عن أسئلة الاختيار من متعدد بتظليل
الشكُّل (
س – عاصمــة سلطنة عمـــان هي:
س فاعتلت سنطبه عبدان تعي.
• — —
🗖 القاهرة 🔲 الدوحة
 □ القاهرة □ الدوحة □ □ مسقط □ أبوظبي □
🗖 القاهرة 🔲 الدوحة

Academic Year: 2018/2019

مُسَوَّدَة، لا يتم تصحيحها

Question 1: Multiple Choice Items

(14 marks)

There are 14 multiple-choice items worth one mark each.

Shade in the bubble () next to the **correct** answer for each of the following items.

First Session - First Semester

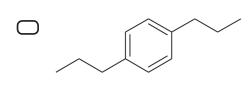
- 1) Which of the following statements about complexes is correct?
 - They contain acidic and electrophilic ligands.
 - Hydrogen bonds form between each ligand and the metal ion.
 - To form complexes, the ligands are attracted to the metal ions.
 - The oxidation number of the metal is always the same as the charge on the complex ion.
- 2) Cu⁺ ions form a linear complex with OH⁻ ions. Which of the following shows the correct structure of the complex and the electronic configuration of Cu⁺ ion in this complex?

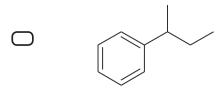
Structure of the complex (complex ion)	Electronic configuration of Cu ⁺
[HO Cu Cu OH]	[Ar]3d ¹⁰ 4s ¹
[HO►Cu·····OH] ¹⁻	[Ar]3d ¹⁰
[HO Cu Cu OH]	[Ar]3d ⁹
[HO Cu ······OH] 1-	[Ar]3d ¹⁰ 4s ²

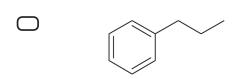
- 3) The oxidation state of (Mn) in MnO_4^- is + 7. Which of the following statements about (Mn) atom is correct?
 - It lost 7 electrons from 3d subshell.
 - It gained 7 electrons from 3d subshell.
 - ☐ It lost 6 electrons from 3d subshell and 1 electron from 4s subshell.
 - ☐ It lost 5 electrons from 3d subshell and 2 electrons from 4s subshell.

Academic Year: 2018/2019

Question 1 continued


- 4) Which of the following statements is $\underline{\text{incorrect}}$ about the delocalised π -bond in benzene?
 - It creates a planar hexagonal shape.
 - ☐ It causes all C-C bond lengths to be equal.
 - ☐ It makes benzene more stable than cyclohexatriene.
 - It prevents benzene undergoing substitution reactions.


Study the following reaction to answer question 5.


5) Which of the following options is correct about the type of the reaction and reagent X?

Type of reaction	Reagent X
Alkylation	CH ₃ CH ₂ CH ₂ Cl
Alkylation	CH ₃ CH ₂ COCI
Acylation	CH ₃ CH ₂ COCI
Acylation	CH ₃ CH ₂ CH ₂ Cl

6) Which of the following would be a possible product from the Friedel-Crafts alkylation of benzene with $C_{A}H_{o}Br$?

- 7) Why the boiling points of acyl chlorides are increased to about 10-15 °C compared to halogenoalkanes with similar shapes?
 - ☐ Electron donating effect of the carbonyl group increases the dipole-dipole attraction.
 - Electron donating effect of the carbonyl group decreases the dipole-dipole attraction.
 - Electron withdrawing effect of the carbonyl group increases the dipole-dipole attraction.
 - Electron withdrawing effect of the carbonyl group decreases the dipole-dipole attraction.

8) What is the major organic product of the following reaction?

OCH₂CH₃

- OCH₂CH₂OH
- 9) Why is CCl₃COOH more acidic than CH₃COOH?
 - ☐ Electron donating group decreases the acidity of carboxylic acid.
 - Electron donating group increases the acidity of carboxylic acid.
 - Electron withdrawing group decreases the acidity of carboxylic acid.
 - Electron withdrawing group increases the acidity of carboxylic acid.
- 10) Which of the following properties is present in ethylamine and glycine?
 - They both react with acids.
 - They both form peptide bonds.
 - They both can form zwitterion.
 - They both contain two functional groups.

Study the following organic compound and then answer questions 11 and 12.

$$\begin{array}{c|ccccc} O & CH_3 & O \\ \parallel & \mid & \parallel \\ H_2N & C & CH & NH & C \\ CH_2 & NH & C & CH & OH \\ & & & & & \\ O & CH_2OH & \\ \end{array}$$

- 11) How many peptide bond(s) in the above compound?
 - \bigcirc 1

2

□ 3

- O 4
- **12)** What are the structural formulae of the reactants that are used to produce the above compound?
 - \bigcirc $\mathrm{NH_2CH_2COH}$, $\mathrm{NH_2CH(CH_3)COH}$, $\mathrm{NH_2CH(CH_2OH)COH}$
 - O NH2CH2COH, NH2CH(CH3)COH, NH2CH(CH2OH)CO2H

 - NH₂CH₂CO₂H , NH₂CH(CH₃)COH , NH₂CH(CH₂OH)CO₂H
- 13) What is the type of reaction that forms the following polymer?

$$\begin{array}{c|ccccc} & CH_{3} & H_{3}C \\ \hline - CH_{2} - C - CH_{2} - C - C \\ \hline - CH_{3} & CH_{3} \end{array}$$

Addition

Substitution

Condensation

Hydration

14) In which of the following polymers, ethylene glycol (HOCH₂CH₂OH), is one of the monomers?

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ \hline & & \\ & & \\ \hline & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c$$

Question 2: Extended Questions

(56 marks)

Write your answer for each of the following questions in the space provided. Be sure to show all your work, including the correct units where applicable.

15) The structure of two complex ions of two transition elements are shown below. Study them to answer the following questions.

$$\begin{bmatrix} OH_2 \\ H_2O & OH_2 \\ OH_2 \end{bmatrix}^{2+}$$

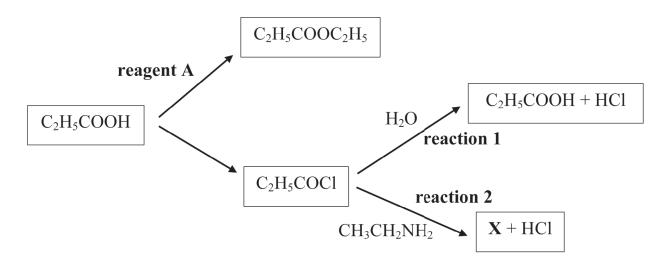
Complex ion (2)

- a. Why Zn is excluded from the class of transition element?
- **b.** What is the name of the shape of complex ion (1)?
- c. What is the type of ligand in complex ion (2)?
 - monodentate

bidentate

Shade the correct answer

Explain your answer.

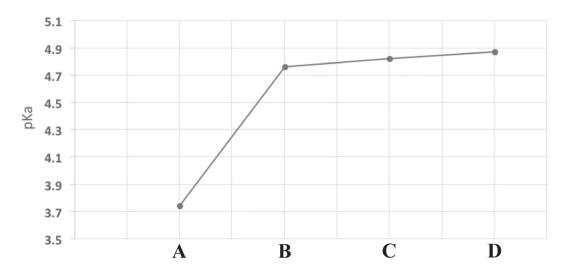

d. Write the chemical formulae of the following: (i) The metal ion in complex ion (1). (ii) The ligand in complex ion (2). e. How many coordination bonds are in: (i) complex ion (1)? _____ (ii) complex ion (2)? _____ f. What is the oxidation state of the metal ion in complex ion (2)? g. If all the ligands of complex ion (2) are replaced with four ligands of chloride ions to form new complex ion with same cobalt ion. (i) Write the electronic configuration of cobalt ion using [Ar] to represent the argon core. (ii) Draw the structural formula of the new complex ion. Your drawing should clearly show three-dimensional shape and should include the overall charge on the complex ion.

16) A series of three chemical reactions was carried out as follows. Study it and answer the following questions.

- a. Write the formula of the electrophile in reaction I.
- **b.** State the reagents and conditions needed for:
 - (i) reaction II: _____
 - (ii) reaction III: _____
- c. Draw the structural formula of the predicted organic product if (CH $_3$ CH $_2$ COCI) is used instead of (CH $_3$ CI) in reaction I.

d. Compound (B) undergoes nitration to form three compounds of disubstituted benzene of 1,2-, 1,3- and 1,4- substituents. Draw the structures of all these three compounds. e. Compound (C) undergoes chlorination to form two compounds with 1,2- and 1,4substituents. Draw the structures of the intermediates of these two compounds.

17) Some reactions of carboxylic acid, are shown below. Study them and answer the following questions.



- a. Write the structural formulae of reagent A, which is needed for the formation of $C_2H_5COOC_2H_5$ and the reaction condition.
 - (i) Reagent A: _____
 - (ii) Condition:
- **b.** Compound C_2H_5COCI undergoes two different reactions: **1** and **2**.
 - (i) What are the two main intermolecular forces in compound $\rm C_2H_5COCl?$
 - (ii) Draw the structural formula of the organic compound X.

(iii) Use curly arrows to outline the mechanism of reaction 1.

-			

18) The following chart shows the pKa values for four different carboxylic acids (ethanoic, hexanoic, methanoic and butanoic acids) represented by (A, B, C or D) randomly. Study it to answer the following questions.

- a. Which carboxylic acid (A, B, C or D) represents butanoic acid?
- **b.** Which carboxylic acid (A, B, C or D) represents the acid with the lowest dissociation in solutions with same concentration?

c. Which carboxylic acid (A, B, C or D) can be further oxidised with Fehling's reagent? Write the chemical equation that shows this reaction.

Carboxylic acid:

The equation: _____

19) An azo compound, that can be made from phenylamine, is shown below, study it and answer the following questions.

Step I

$$NH_2 + HNO_2 + H^+$$
 $NH_2 + HNO_2 + H^+$ $NH_2 + HNO_2 + H^+$

Step II

$$N_{+}$$
 N_{-} N_{-

- a. Explain why phenylamine is a basic compound.
- b. What are the reagents and condition needed in step I?
- ${f c.}$ What is the name of the reaction in step II?
- d. Is step II a nucleophilic or an electrophilic substitution reaction?
- e. Draw the structural formula of X.

f. If **X** reacts with the following compound, what is the structural formula of the produced azo compound?

$$CI_{-}N = N_{+}$$
 $N_{+} N_{+} N_{-} N_{$

20) The following structures show different organic compounds. Study them then answer the following questions.

- a. Which compound can form zwitterion?
- **b.** Write the product(s) for the following reaction.

$$B \xrightarrow{H_3O^+ + H_2SO_4(aq)}$$

c. Explain why compound (D) can react with acid or base solutions.

- **d.** Write the structural formula of the organic product formed by reduction of compound ($\bf C$) by $\bf H_2$ and $\bf Ni$.
- **21)** The following grid shows the formulae of six compounds. Study them and answer the following questions.

Α	В	С
Н Н НО—С—С—ОН Н Н	H CI 	о о ноЁ-Ю-Ёон
D	Е	F
$C=C$ CH_2 $C=C$ CH_2 C	F = C F	CH ₃

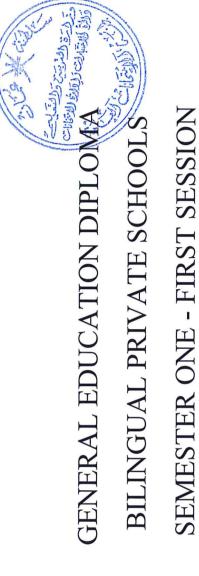
- a. Which compound is:
 - (i) Poly (chloroethene):
 - (ii) Polylactic acid: _____
- **b.** Draw the structural formula of the polymer that is formed from the polymerisation of compound **E**.

- **c.** Identify the type of polymerisation for:
 - (i) compound **B**.
 - (ii) compound F.
- **d.** Which compound from the above is an electrical conductor polymer? Explain your answer.

- **e.** What is the functional group found in the polymer that forms by reacting compounds **A** and **C**?
- f. Explain why compound **D** allows further addition reactions to take place.
- 22) Vulcanisation is a well-known process in synthetic rubber.
 - a. What is meant by vulcanisation?
 - **b.** State one property of the produced substance from this process.

[End of Examination]

First Session - First Semester


PERIODIC TABLE OF THE ELEMENTS

2 He 4002602 Hellum 10 Neon 18 Ar Neon 18 Ar Neon 18 Ar Neon 18 Ar Neon 18 Ar Neon 18 Ar Neon 10 Ne 10 Neon 10 Neon 10 Ne Neon 10 Neon	36 Kr 83.798 Krypton	54 Xenon	Radon	Uuo
9	35 Br 79.904 Bromine	53	At 210 Astatine	UuS
8 Oxygen 15.999 16 Sulfur	34 Se 78.971 Selenium	52 Tellurium	P0 209 Polonium	116 LV 293 Livermorium
7 NITrogen 14.007 15 P 30.973761998 Phosphorus	33 AS 74,921595 Arsenic	51 Sb 121.760 Antimony	83 Bi 208.98040 Bismuth	Uup 289 Ununpentium
6 Carbon 12011 Carbon 14 Si Silicon Silicon	32 Ge 72.630 Germanium	50 Sn 118.710	92 Pb 207.2 Lead	114 F 289 Flerovium
B 1081 Boron 13 All Aluminium	31 Ga 69.723 Gallium	49 n 114.818 Indium	204.38 Thallium	Uut
	30 Zn 65.38 Zinc	48 112.414 Cadmium	80 HG 200.592 Mercury	Cn 285 Copernicium
	29 Cu 63.546 Copper	Ag 107.8682 Silver	Au 196.966569 Gold	Rgg 281 Roentgenium
Atomic Mass Name	28 N 58.6934 Nickel	Pd 106.42 Palladium	78 Pt 195.084 Platinum	DS 281 Darmstadtium
	27 C0 58.933194 Cobalt	45 Rh 102,90550 Rhodium	77 	109 Mt 278 Meitnerium
1.008 ← Hydrogen ←	26 Fe 55.845 Iron	Ruthenium	76 OS 190.23 Osmium	108 Hsssium
-	25 Mn 54.938044 Manganese	TC 98 Technetium	75 Re 186.207 Rhenium	107 Bh
Atomic Number → Symbol —	24 Cr 51.9961 Chromium	Mooybdenum	74 W 183.84 Tungsten	Sg 269 Seaborgium
Atomi	23 V 50.9415 Vanadium	41 N 92.90637 Niobium	73 Ta 180.94788 Tantalum	105 Db
	22 ———————————————————————————————————	40 Zr 91.224 Zirconium	Hf 178.49	Rf 267 Rutherfordium
	21 SC 44.955908 Scandium	39 Y 88.90584 Yttrium	57/	89/103
Be 9.0121831 Beryllium 12 Mg 24.305 Magnesium	20 Ca 40.078 Calcium	Sr 87.62 Strontium	56 Ba 137.327 Barium	Radium
1 H 1.008 1.008 Hydrogen 3 Lithium 11 Na 22.289976928 Sodrum	19 X 39.0983 Potassium	Rb 85.4678 Rubidium	55 CS 132.90545196 Caesium	87 Francium

Lu	174.9668 Lutetium	103 L L
۲b	173.054 Ytterbium	NO Nobelium
°° Tm	168.93422 Thulium	Md 258 Mendelevium
Er Er	167.259 Erbium	Fm 257 Fermium
67 Ho	164.93033 Holmium	ES 252 Einsteinium
°6 Dy	162.500 Dysprosium	98 Cf 251 Californium
es Tb	158.92535 Terbium	97 BK 247 Berkelium
² Gd	157.25 Gadolinium	96 Cm
Eu Eu	151.964 Europium	Am 243 Americium
62 Sm	150.36 Samarium	Pu 244 Plutonium
Pm	145 Promethium	Neptunium
_©	144.242 Neodymium	92 U 238.02891 Uranium
Pr	140.90766 Praseodymium	Pa 231.03588 Protactinium
ه و	140.116 Cerium	90 Thorium
La La	138.90547 Lanthanum	AC
Lanthanide Series		Actinide Series

MARKING GUIDE

CHEMISTRY 2018 / 2018

Detailed Exam: Specifications for Semester One:

	Total	15	13	14	15	13	70
Reasoning (20%)		3	2	3	3	2	13
Cognitive levels	(%02) gniylqqA	7	7	7	7	7	35
ŭ	Knowing (30%)	5	4	4	5	4	22
onse (80%)	Marks	12	10	11	12	11	56
Extended response (80%) No. of Spanner Spanner (80%)		10					
Multiple choice (20%)	%) Marks		3	3	3	2	14
Multip (2	No. of Items	3	3	3	3	2	14
	% gnithgiəW	22%	18%	20%	22 %	18%	100%
	Topics of the units	An introduction to the chemistry of transition elements	Arenes and phenols	Carboxylic acids and derivatives	Nitrogen compounds	Polymerization	Total

General Education Diploma, Bilingual Private Schools, Semester One, First Session, Chemistry, 2018/2019.

Distribution of cognitive domains and marks.

Serial. No	Question Number	Item	Mark	Unit	Page	Cognitive domain	Out-
1	1	1	1	Transition elements	398+ 403	Knowing	1.2a 1.3a 1.3b.i
2	1	2	1	Transition elements	399+ 403+ 404	Applying	1.2b 1.2d
3	1	3	1	Transition elements	398+ 402+ 404	Applying	1.2a 1.2d
4	1	4	1	Arenes and phenols	415	Knowing	2.1c
5	1	5	1	Arenes and phenols	423+ 424	Applying	2.1b 2.1d.i
6	1	6	1	Arenes and phenols	426	Applying	2.1diii
7	1	7	1	Carboxylic acids and derivatives	443	Knowing	3.2a
8	1	8	1	Carboxylic acids and derivatives	443	Applying	3.2c
9	1	9	1	Carboxylic acids and derivatives	441	Reasoning	3.1d
10	1	10	1	Nitrogen compounds	453+ 464	Knowing	4.1b+ 4.2e
11	1	11	1	Nitrogen compounds	464	Applying	4.2e
12	1	12	1	Nitrogen compounds	464	Reasoning	4.2e
13	1	13	1	Polymerization	470	Applying	5.2a
14	1	14	1	Polymerization	476	Reasoning	5.3c,d

٠

General Education Diploma, Bilingual Private Schools, Semester One, First Session, Chemistry, 2018/2019.

					Jak.	377	
Serial. No	Question Number	Item	Mark	Unit	Page	Cognitive domain	Output
	2	15.a	1	Transition elements	398	Knowing	1.2a
	2	15.b	1	Transition elements	404	Knowing	1.3f
1	2	15.c	2	Transition elements	403+ 408	Knowing	1.3h
	2	15.d(i)	1	Transition elements	403+ 408	Applying	1.3c+ 1.3g
	2	15.d(ii)	1	Transition elements	403+ 408	Applying	1.3h+ 1.3g
	2	15.e(i)	1	Transition elements	408	Applying	1.3f
		15.e(ii)	1	Transition elements	408	Applying	1.3f
	2	15.f	1	Transition elements	399	Applying	1.2e
	2	15.g(i)	1	Transition elements	398+ 399	Applying	1.2b
	2	15. g(ii)	2	Transition elements	404	Reasoning	1.3f
	2	16.a	1	Arenes and phenols	426	Knowing	2.1diii
	2	16.b(i)	1	Arenes and phenols	429	Knowing	2.1g
	2	16.b(ii)	1	Arenes and phenols	430	Knowing	2.1div
	2	16.c	2	Arenes and phenols	426	Applying	2.1diii
	2	16.d	3	Arenes and phenols	424	Applying	2.1dii
	2	16.e	2	Arenes and phenols	424	Reasoning	2.1di
	2	17.a	1	Carboxylic acids and derivatives	309	Knowing	3.1aii
	2	17.b(i)	2	Carboxylic acids and derivatives	443	Knowing	3.2a
	2	17.b(ii)	2	Carboxylic acids and derivatives	444	Applying	3.2c
	2	17.b(iii)	2	Carboxylic acids and derivatives	445	Applying	3.2e
	2	18.a	1	Carboxylic acids and derivatives	441-442	Applying	3.1c
	2	18.b	1	Carboxylic acids and derivatives	441-442	Applying	3.1c

١

General Education Diploma, Bilingual Private Schools, Semester One, First Session, Chemistry 2018/2019.

				Mas.	27/-5/	//
2	18.c	2	Carboxylic acids	441-442	Reasoning	3.1c +
			and derivatives	441-442		1.3bi
2	19.a	1	Nitrogen	456	Knowing	4.1b
		1	compounds	150		
2	19.b	1	Nitrogen	451	Knowing	4.1dii
	10	****	compounds	****	77 '	
2	19.c	1	Nitrogen	451	Knowing	4.1e
2	19.d		compounds		Knowing	
2	19.0	1	Nitrogen compounds	456	Kilowilig	4.1e
2	19.e		Nitrogen		Reasoning	
	19.0	1	compounds	456	Reasoning	4.1e
2	19.f		Nitrogen		Reasoning	
_		1	compounds	456		4.1e
2	20.a	1	Nitrogen	460	Applying	4.2-
		1	compounds	462		4.2e
2	20.b	2	Nitrogen	460	Applying	4.2d
			compounds	460		4.2u
2	20.c	2	Nitrogen	462	Applying	4.2b +
			compounds	102		4.2e
2	20.d	1	Nitrogen	458	Applying	4.1a
	01 (1)		compounds		A1	
 2	21.a(i)	1	Polymerisation	470	Applying	5.1a
2	21.a(ii)	1,	Polymerisation	474	Applying	5.1a
2	21.b	1	Polymerisation	476	Reasoning	5.3c
2	21.c(i)	1	Polymerization	470	Applying	5.2b
2	21.c(ii)	1	Polymerization	474	Applying	5.2b
2	21.d	2	Polymerization	482	Applying Knowing	5.3e
2	21.e	1	Polymerization	474-475	Applying	5.3d
2	21.f	1	Polymerization	470	Knowing	5.1a+ 5.2b
2	22.a	1	Polymerization	471	Knowing	5.26 5.3e
2	22.b	1	Polymerization	471	Knowing	5.3e
	22.0	1	1 Olymenzanon	7/1	11110	3.30

Question ONE TOTAL MARKS: 14. There are 14 multiple-choice items. Each correct answer is worth ONE mark.

Item No.	Correct option		
1	To form complexes, the ligands are attracted to the metal ions.		
2	[HO—Cu······OH] ¹⁻ [Ar]3d ¹⁰		
3	It lost 5 electrons from 3d subshell and 2 electrons from 4s subshell.		
4	It prevents benzene undergoing substitution reactions.		
5	Acylation CH ₃ CH ₂ COCl		
6			
7	Electron withdrawing effect of the carbonyl group increases the dipole-dipole attraction.		
8	OCH ₂ CH ₃		
9	Electron withdrawing group increases the acidity of carboxylic acid		
10	They both react with acids.		
11	2		
12	NH ₂ CH ₂ CO ₂ H , NH ₂ CH(CH ₃)CO ₂ H , NH ₂ CH(CH ₂ OH)CO ₂ H		
13	Addition		
14	—(-0-CH ₂ -CH ₂ OOC		

Question TWO: TOTAL MARKS: 56

:	item 15 Total marks 12 answer		
		answer	marks
15	a	- Zn forms only the colourless Zn ²⁺ ion.	1
		- it has 10 electrons in 3d subshell.	
		- it has filled 3d orbital has one oxidation state.	
		Any answer from above mark is given.	-
	b	Tetrahedral	1
	c	Bidentate (1 mark)	1
		- Because each ligand $(C_2O_4^{2-})$ joins by two bonds to the metal ion	
		$(Co^{3+}).$	1
		- Because each ligand $(C_2O_4^2)$ is attached by two coordinate bonds	
		to the metal ion (Co^{3+}) .	
		- Because five-membered ring is formed between each ligand.	
		$(C_2O_4^{2-})$ and the metal ion (Co^{3+}) .	
		- Because each ligand $(C_2O_4^{2-})$ forms chelates.	
		- Because each ligand $(C_2O_4^{2-})$ contains two groups that have a lone	
		pair of electrons.	
		Any answer from above mark is given. (1 mark)	
	d(i)	Cu^{2+}	1
	d(ii)	$C_2O_4^{2-}$ or $O_2CCO_2^{-}$ or	1
		0 0	
		C	
	2(3)	4 or four	1
	e(i)		1
	e(ii)	6 or six	
	f	+3 (1 mark)	1
	g(i)	[Ar]3d ⁶	1
	g(ii)		
	5(11)	1mark for drawing the three-	2
		dimensional shape (the tetrahedral	
		shape) of the complex ion.	
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		overall charge on the complex ion	

	١
وتراورة والمنزيس والفقالي	1
/ وقرط تنظر المصنون من قط المنظر المستخاصية والمثاق الملاقة الملاقة الملاقة الملاقة الماستة	

only L		Item 16 Total marks 10	//
it	tem	answer	marks
16	a	CH ₃ ⁺	1
	b(i)	Cl ₂ 1/2 mark UV light or boiling 1/2 mark	1
	b(ii)	KMnO ₄ (or Cr ₂ O ₇ ²⁻) 1 mark heat with OH ⁻ 1 mark	2
	С	H ₃ C CH ₂ O	1
	d	CO ₂ H CO ₂ H CO ₂ H CO ₂ H NO ₂ NO ₂ 3 marks: each compound 1 mark	3
	e	$ \begin{array}{cccc} CH_3 & H & H & H \\ CH_3 & H & H_3C \end{array} $ $ \begin{array}{cccc} CH_3 & H & H & H \\ CH_3 & H_3C \end{array} $ One compound is required.	2

0

General Education Diploma, Bilingual Private Schools, Semester One, First Session, Chemistry, 2018/2019.

	Item 17 Total marks 7				
item		answer	marks		
17	a(i)	CH ₃ CH ₂ OH or C ₂ H ₅ OH	1		
	a(ii)	H ⁺ or H ₂ SO ₄	1		
	b(i)	Van der Waals' force. (1 mark)	2		
		And dipole-dipole force. (1 mark)			
	b(ii)	CH ₃ CH ₂ CONHCH ₂ CH ₃ or C ₂ H ₅ CONHCH ₂ CH ₃	1		
	b(iii)	CH ₃ CH ₂	2		
		ch ₃ ch ₂ ch ₃ ch ₂ ch ₃ ch ₂ ch ₃ ch ₂ col ch ₃ ch ₂ col ch ₃ ch ₂ col ch ₃ ch ₃ ch ₄ col ch ₄			

		Item 18 Total marks 4	
it	tem	answer	marks
18	a	С	1
	b	D	1
	c	A (1 mark)	2
		HCOOH + $2Cu^{2+}_{(aq)}$ + $6OH^{-} \rightarrow 3CO_{3}^{2-}_{(aq)}$ + $2CuO_{(s)}$ + $4H_{2}O$ (1 mark) -To get the mark all components of the equation should be correctBalancing equation and physical states are unnecessary.	

ide	Item 19 Total marks 6				
i	tem	answer	marks		
19	а	 It react with acids to form salts. it can gain proton. it can donate electrons. it reacts with water to form OH⁻. C₆H₅-NH₂ + H⁺	1		
	b	NaNO ₂ + HCl 1/2 mark T <5 °C (low T <10 °C) 1/2 mark	1		
	c	Coupling reaction.	1		
	d	electrophilic substitution	1		
	e	CH ₃ or CH ₃	1		
	f	HO N N OH CH3	1		

i	tem	answer	
20	a	D	1
	b	H ₅ C ₂ OH + NH ₄ ⁺ Each product 1 mark	2
	С	Because it contains an <u>acidic group (-COOH)</u> and <u>basic group (-NH₂)</u> . I mark 1 mark	2
	d	H ₃ C NH ₂	1

General Education Diploma, Bilingual Private Schools, Semester One, First Session, Chemistry, 2018/2019.

	Item 21 Total marks 9				
i	tem	answer	marks		
21	a(i)	В	1		
	a(ii)	F	1		
	b	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1		
	c(i)	Addition polymerisation.	1		
	c(ii)	Condensation polymerisation.	1		
	d	D [1mark]	2		
		 Because it has conjugated double bonds. The π bonds on adjacent alkene units overlap and the π electrons become delocalized throughout the whole length of rubber chain. Any answer from above mark is given [1mark] 			
	e	Ester group. Or -COO- or R-COO-R'	1		
	f	Because it has double bonds or unsaturated bonds.	1		

		Item 22 Total marks 2	
item		answer	marks
22	a	Heating natural polymer (or rubber) with sulfur.	1
	b	- Higher melting point.	1
		- Greater strength	
		-Durable	
	-	- Resist environmental conditions.	
		- Stay longer.	
		Any answer from above mark is given [1mark]	

End of mark scheme