

امتحان دبلوم التعليم العام للمدارس الخاصة (ثنائية اللغة) للعام الدراسي ١٤٤٠/١٤٣٩ هـ - ٢٠١٨ / ٢٠١٩ م الدور الأول - الفصل الدراسي الثاني

الكيمياء	المادة:	•	تنىيە:
** **			** *

• زمن الإجابة: ثلاث ساعات.

الأسئلة في (١٤) صفحة.

• الإجابة في الورقة نفسها.

تعليمات مهمة:

- يجب الحضور إلى قاعة الامتحان قبل عشر دقائق على الأقل من بدء زمن الامتحان.
 - يجب إحضار أصل ما يثبت الهوية وإبرازها للعاملين بالامتحانات.
- يجب الالتزام بالزي (الدشداشة البيضاء والمصر أو الكمة للذكور)
 والزي المدرسي للطالبات ، ويستثنى من ذلك الدارسون من غير
 العمانيين بشرط الالتزام بالذوق العام ، ويمنع على جميع المتقدمات
 ارتداء النقاب داخل المركز وقاعات الامتحان.
- يحظر على الممتحنين اصطحاب الهواتف النقالة وأجهزة النداء الآلي وآلات التصوير والحواسيب الشخصية والساعات الرقمية الذكية والآلات الحاسبة ذات الصفة التخزينية والمجلات والصحف والكتب الدراسية والدفاتر والمذكرات والحقائب اليدوية والآلات الحادة أو الأسلحة أياً كان نوعها وأي شيء له علاقة بالامتحان.
- يجب على الممتحن الامتثال لإجراءات التفتيش داخل المركز طوال أيام الامتحان.

- يجب على الممتحن التأكد من استلام دفتر امتحانه، مغلفاً بغلاف
بلاستيكي شفاف وغير ممزق ، وهو مسؤول عنه حتى يسلمه لمراقبي
اللجنة بعد الانتهاء من الإجابة.
- يجب الالتزام بضوابط إدارة امتحانات دبلوم التعليم العام وما في
مستواه وأية مخالفة لهذه الضوابط تعرضك للتدابير والإجراءات
والعقوبات المنصوص عليها بالقرار الوزاري رقم ٥٨٨ / ٢٠١٥.
- يقوم المتقدم بالإجابة عن أسئلة الامتحان المقالية بقلم الحبر (الأزرق
أو الأسود).
 ـ يقوم المتقدم بالإجابة عن أسئلة الاختيار من متعدد بتظليل
الشكل (
س – عاصمــة سلطنة عمـــان هي:
🗖 القاهرة 🔲 الدوحة
🗖 مسقط 🔻 أبوظبي
ملاحظة: يتم تظليل الشكل (🛑) باستخدام القلم الرصاص وعند
الخُطأ، امسح بعناية لإجراء التغيير.

Academic Year: 2018/2019

مُسُودة، لا يتم تصحيحها

Use the following if necessary:

Faraday constant = 96500 Cmol^{-1}

Avogadro constant = $6.022 \times 10^{23} \text{ mol}^{-1}$

Specific heat capacity (H_2O) = 4.18 J g^{-1} K^{-1}

Attachments: periodic table and table of standard electrode potentials

Question 1: Multiple Choice Items

(14 marks)

There are 14 multiple-choice items worth one marks each.

Shade in the bubble () next to the **correct** answer for each of the following items.

- 1) Which of the following statements is correct about exothermic reactions?
 - \bigcirc The enthalpy change ($\triangle H$) is positive.
 - The energy of the system is decreased.
 - The heat is taken in from the surrounding.
 - The reactants have less enthalpy than the products.
- 2) Which of the following equations represents the standard enthalpy of formation (ΔH_f^{Θ}) of ethyne $C_2H_{2(\alpha)}$?

$$C_2H_{2(g)} + \frac{5}{2}O_{2(g)} \longrightarrow 2CO_{2(g)} + H_2O_{(g)}$$

$$\Box$$
 $CaC_{2(s)} + 2H_2O_{2(l)} \longrightarrow C_2H_{2(g)} + Ca(OH)_{2(aq)}$

3) Red lead oxide, Pb_3O_4 , is used in metal priming paints. It can be made by heating PbO in air.

$$6PbO_{(s)} + O_{2(g)} \longrightarrow 2Pb_3O_{4(s)}$$

Which two enthalpy changes are needed to calculate the enthalpy change for this reaction?

- \square Enthalpy change of atomisation of Pb and enthalpy change of formation of Pb₃O₄.
- Enthalpy change of combustion of PbO and enthalpy change of atomisation of Pb.
- Enthalpy change of formation of PbO and enthalpy change of atomisation of O₂.
- igcup Enthalpy change of formation of PbO and enthalpy change of formation of Pb $_3$ O $_4$.

4) Which of the following statements is <u>incorrect</u> about the half – life of a first - order reaction?

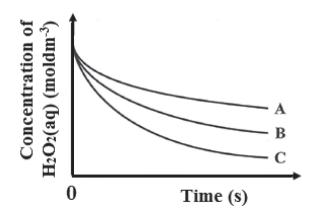
It is constant.

☐ It depends on the initial reactant concentration.

It can be calculated from the reaction rate constant.

It is the time necessary for the reactant concentration to drop to half its original value.

5) The initial concentration of a substance is 0.6 mol dm^{-3} , if 50% of it is reacted in 0.5 min, what is the rate of this reaction in mol dm^{-3} s⁻¹?

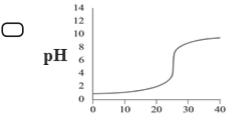

0.01

0.02

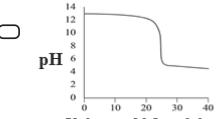
0.3

⊃ 1.2

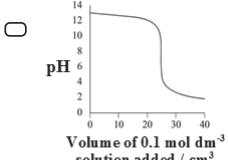
6) The diagram below shows the concentration change of (H_2O_2) with time in different experiments (A, B and C).

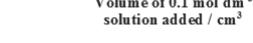


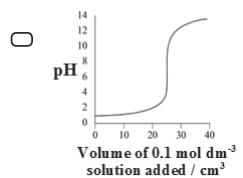
Which of the following statements is correct?


- \bigcirc The initial $[H_2O_2]$ in A is higher than in B.
- The order of the reaction is zero order.
- \bigcirc Hydrogen peroxide H_2O_2 is a product.
- The reaction in C is faster than in A.

7) The titration curves below were obtained using different acids and bases, each with concentration of 0.1 mol ${\rm dm}^{-3}$


Which curve is produced by adding ammonia to 25 cm³ of hydrochloric acid?




Volume of 0.1 mol dm⁻³ solution added / cm³

Volume of 0.1 mol dm⁻³ solution added / cm³

8) Which of the following would form a buffer solution when equal moles are mixed together?

☐ HCl and NaCl.

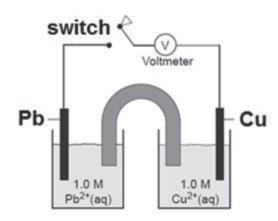
HCN and NaCN.

 \bigcirc KNO₃ and KOH.

 \bigcirc Na₂SO₄ and NaOH.

9) What is [NaOH] solution in mol dm⁻³ which has pH = 11.0 at 25 $^{\circ}$ C?

☐ 1.0 X 10⁻³


☐ 1.0 X 10⁻¹¹

☐ 11.0 X 10⁻³

☐ 11.0 X 10⁻¹¹

- 10) Which statement is correct about the electrochemical cell and electrolytic cell?
 - The reduction occurs at the negative electrode in electrochemical cell.
 - The anode is positive and the cathode is negative in both cells.
 - The oxidation occurs at the cathode in the electrolytic cell.
 - The reduction occurs at the cathode in both cells.

The diagram below shows an electrochemical cell at standard conditions. Study it to answer questions (11) and (12).

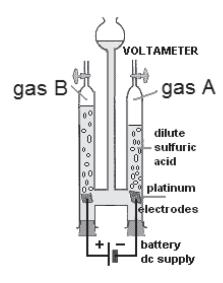
$$Pb^{2+}(aq) + 2\acute{e}$$
 $Pb_{(s)}$

$$E^{\Theta} = -0.13 \text{ V}$$

$$Cu^{2+}_{(aq)} + 2\acute{e}$$

$$Cu_{(s)}$$

$$E^{\Theta} = +0.34 \text{ V}$$


- 11) Which changes will occur when the switch is closed?
 - Pb is oxidised, and electrons flow to the Cu electrode.
 - Pb is reduced, and electrons flow to the Cu electrode.
 - Cu is oxidised, and electrons flow to the Pb electrode.
 - Cu is reduced, and electrons flow to the Pb electrode.
- 12) What is the standard electromotive force E_{cell}^{Θ} for this cell?
 - ─ -0.21 V

→ +0.21 V

─ -0.47 V

→ + 0.47 V

The shown apparatus is used for the electrolysis of water. Tubes are initially filled with an aqueous solution of H_2SO_4 . Study it to answer questions (13) and (14).

13) What is the gas A produced from the electrolysis of water?

 \bigcirc SO_2

 \bigcirc so₃

 \bigcirc \bigcirc_2

 \bigcirc H₂

14) What is the mass ratio of gas A to gas B produced in the tubes?

	Gas A	Gas b
١	1	2
١	1	4
١	1	8
١	1	16

Extended Questions

(56 marks)

Write your answer for each of the following questions in the space provided. Be sure to show all your work, including the correct units where applicable.

15) a. Some powdered NH_4NO_3 (2.5 g) was dissolved in 50.0g of water in a simple expanded polystyrene calorimeter. The temperature fell by 10.1°C. (Mr: $NH_4NO_3 = 80.0$ g mol⁻¹)

(i) Define the enthalpy change of solution $\Delta H_{\rm sol}.$

- (ii) Calculate the enthalpy change of solution of ammonium nitrate in kJ mol⁻¹ unit.
- **b.** Explain why the standard enthalpy of neutralisation of equal volume of strong acid by strong base such as aqueous sodium hydroxide is always close to –57.6 kJ mol⁻¹

16) Consider the following reaction and information below:

$$H_{2(g)} + Br_{2(g)} \longrightarrow 2HBr_{(g)}$$

Bond	Н—Н	H—Br	Br—Br
energy (kJ mol ⁻¹)	+436	+366	+193

- a. Explain what is meant by Br—Br bond enthalpy?
- **b.** Write the symbol for the H—Br bond enthalpy.
- c. Calculate ΔH for the formation of $HBr_{(g)}$.

d. Draw labelled energy level diagram for the reaction above.

17) a. Ethanal, CH₃CHO dimerises in dilute alkaline solution according to the equation.

$$2CH_{3}CHO_{(aq)} \xrightarrow{OH_{(aq)}^{-}} CH_{3}CH(OH)CH_{2}CHO_{(aq)}$$

The following data were obtained in series of experiments on the rate of reaction between ethanal and hydroxide ion at a constant temperature.

Experiment number	[OH]/mol dm ⁻³	[CH ₃ CHO]/mol dm ⁻³	Relative rate
1	0.01	0.147	1
2	0.02	0.15	2
3	0.01	0.30	2

(i) Show how the data in the table can be used to deduce that the reaction is first-order with respect to OH⁻

(ii) Deduce the order with respect to ${\rm CH_3CHO}$ and the overall reaction order.

b. Ethyl chloride decomposes into ethylene and hydrochloric acid in a first-order reaction that has a half-life of 120 hours at 650°C.

Calculate the rate constant for the reaction under these conditions in $\rm s^{-1}$ unit.

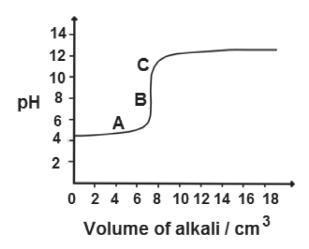
18) The reaction between (X) and (Y) was studied:

$$X_{(g)} + Y_{(g)} \longrightarrow XY_{(g)}$$

By doing two experiments at the same temperature, it is found that rate = k[X][Y]Use the rate equation and the table below to answer the following questions:

Experiment	[X] / mol dm ⁻³	[Y] / mol dm ⁻³	Rate / mol dm ⁻³ s ⁻¹
1	0.100	0.005	1.35 ×10 ⁻⁷
2	0.200	?	5.4 ×10 ⁻⁷

a. What is meant by half-life of a reaction?


b. State two factors, which can affect the rate of a reaction?

Academic Year: 2018/2019

Question 2 continued

c. Calculate [Y] in experiment 2.

19 a. Study the following titration graph and answer the questions below:

(i) Choose the best indicator for this titration from the table below?

Indicator	Range
Methyl orange	3.2 – 4.4
Phenolphthalein	8.2 – 10.0

- (ii) In which point the number of moles of the base is larger than number of moles of acid?
 - A

О В

(choose the correct answer)

b. The solubility product constant, $K_{\rm sp}$, of Iron (III) hydroxide, Fe(OH) $_{\rm 3}$, at 25°C is $6.0\times10^{-38}~{\rm mol}^4~{\rm dm}^{-12}$.

(i) Write the solubility product constant, $K_{\rm sp}$, expression for ${\rm Fe(OH)}_3$.

(ii) Calculate the solubility of $Fe(OH)_3$ at 25°C.

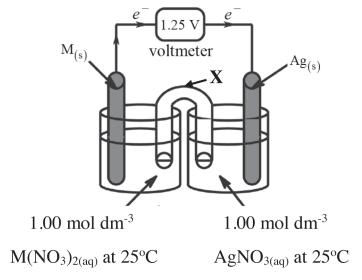
(iii) What happens to solubility of Fe(OH)_3 when adding a solution containing $\text{OH}^-_{\text{(aq)}}$?

Increases

Decreases

Does not change

(choose the correct answer)


20) A buffer solution has a volume of 1.00 L and contains 0.20 mol of acetic acid (CH₃COOH) and 0.10 mol of sodium acetate (CH₃COONa). (K_a for CH₃COOH = 1.8×10^{-5})

a. What is meant by a buffer solution?

b. Calculate the pH of this buffer solution.

c. Describe how this buffer solution minimises the effect of addition of a small amount of strong acid, $H_{(aq)}^+$.

21) The electrochemical cell below consists of (Ag) half-cell and unknown half-cell represented by (M) at standard conditions. The reading on the voltmeter is +1.25 V. Study the diagram and answer the following questions.

- **a.** What is the name of the apparatus labelled (X)?
- b. Write the half-cell oxidation and reduction reactions that occur in this cell.

The half-cell oxidation reaction: _

The half-cell reduction reaction: _____

- **c.** Write the cell diagram as a short hand way to represent the reactions that occur in this cell.
- **d.** If the standard electrode potential (E^{Θ}/V) in volts for ($Ag^{+}_{(aq)}/Ag_{(s)}$) is + 0.80 V, calculate the standard electrode potential (E^{Θ}/V) of the unknown electrode represented by (M). Show your calculations.

e. (i) What would be the direction of electron flow through the wire when $(M_{(aq)}^{2+}/M_{(s)})$ half-cell is replaced with standard hydrogen electrode?

(ii) What are the three conditions needed for the hydrogen half-cell to function at standard conditions?

22) a. A current is passed through $Ga(NO_3)_3$ solution for 1.5 hours, and after this time period the mass of metal produced was 6.5 g. What is the current in amperes that is required to produce this amount of gallium? [M_r(Ga) = 69.72 g mol⁻¹].

b. The following grid shows some types of common fuel cells and batteries. Study it to answer the questions below.

Α	Fuel cell	В	NiMH cell	С	Nickle-Cadmium cell
D	Lead-acid cell	E	Lithium cell		

In the spaces provided, write the correct symbol for the following statements:

- (i) It has lead plates dipping into moderated concentrated sulphuric acid. (_____)
- (ii) It converts hydrogen and oxygen into water. (_____)
- (iii) It is light and produces a large voltage. (_____)
- (iv) Its negative electrode made of a metal that can absorb hydrogen to make a hydride. (_____)
- **c.** A student said: You can keep a solution containing ($\mathrm{Ag}^+_{(\mathrm{aq})}$ ions) in a container made of copper metal. Do you agree or disagree. Explain your answer using E^Θ values and equation.

[End of Examination]

Values of $E^{\boldsymbol{\theta}}$ for some half reactions

Half cell	E ^O /V
$\operatorname{Li^+_{(aq)}}/\operatorname{Li_{(s)}}$	-3.03
$\mathrm{K}^{+}_{\mathrm{(aq)}}$ / $\mathrm{K}_{\mathrm{(s)}}$	-2.92
$Na^{+}_{(aq)} / Na_{(s)}$	-2.71
$Mg^{2+}_{(aq)} / Mg_{(s)}$	-2.37
$Al^{3+}_{(aq)} / Al_{(s)}$	-1.66
$Zn^{2+}_{(aq)} / Zn_{(s)}$	-0.76
$Fe^{2+}_{(aq)} / Fe_{(s)}$	-0.44
$H^{+}_{(aq)} / \frac{1}{2} H_{2(g)}, Pt$	0.00
$Cu^{2+}_{(aq)} / Cu_{(s)}$	+0.34
$\frac{1}{2}I_{2(aq)}/I_{(aq)}$, Pt	+0.54
$Fe^{3+}_{(aq)} / Fe^{2+}_{(aq)}, Pt$	+0.77
$Ag^{+}_{(aq)} / Ag_{(s)}$	+0.80
$\frac{1}{2} Br_{2(aq)} / Br_{(aq)}$, Pt	+1.09
$\frac{1}{2}O_{2(g)}$, Pt + 2H ⁺ _(aq) / H ₂ O _(l)	+1.23
$\frac{1}{2}Cl_{2(aq)} / Cl_{(aq)}$, Pt	+1.36
$Au^{3+}_{(aq)} / Au_{(s)}$	+1.50
$MnO_{4(aq)} + 8H^{+}_{(aq)} / Mn^{2+}_{(aq)}$, Pt	+1.51
$\frac{1}{2}F_{2(aq)} / F_{(aq)}$, Pt	+2.87

PERIODIC TABLE OF THE ELEMENTS

2 Helium	10 Nec. 20.1797	18 Argon	36 Kr 83.798 Krypton	54 Xenon	Rn 222 Radon	Ununoctium
	9 F 18.998403163	17 C 35.45 Chlorine	35 Br 79.904 Bromine	53	At 210 Astatine	UUS 294 Ununseptium
	8 O 15.999	Oxygen Sa.06 Sulfur	34 Selenium	52 Tellurium	84 PO 209 Polonium	Livermorium
	Z 14.007	15 P 30.973761998 Phosphorus	33 Asenic	51 Sb 121.760 Antimony	83 Bi 208.98040 Bismuth	Uup 289 Unupentium
	6 C 12.011	28.085 Silicon	32 Ge 72.630 Germanium	50 Sn 118.710 Tin	82 Pb 207.2 Lead	114 Fl 289 Flerovium
	5 B	13 A 26.9815385 Aluminium	31 Ga 69.723 Gallium	49 N 114.818 Indium	204.38 Thallium	Uut 286 Ununtrium
			30 Zn 65.38 Zinc	48 Cd 112.414 Cadmium	80 HQ 200.592 Mercury	Cn 285 Copernicium
			29 Cu 63.546 Copper	47 Ag 107.8682 Silver	Au 196.966569 Gold	DS RQ 281 Sommaradtuum Roentgenium
	:	Atomic Mass Name	28 N: 58.6934 Nickel	Pd 106.42 Palladium	78 Pt 195.084 Platinum	DS 281 Darmstadtium
			27 C0 58.933194 Cobalt	45 Rhodium	77	109 Mt 278 Meitnerium
	工	1.008 ← Hydrogen ←	26 Fe 55.845 Iron	Ruthenium	76 OS 190.23 Osmium	HS 269 Hassium
<u>_</u>	1	Î	25 Mn 54.938044 Manganese	TC 98 Technetium	75 Re 186.207 Rhenium	Bh
Atomic Number →	Symbol		24 Cr 51.9961 Chromium	42 MO 95.95 Molybdenum	74 W 183.84 Tungsten	Sg 269 Seaborgium
Atomi			23 V 50.9415 Vanadium	41 N92.90637 Niobium	73 Ta 180.94788 Tantalum	105 Db
			22 T 47.867 Titanium	40 Zr 91.224 Zirconium	Hafnium	Pf 267 Rutherfordium
		_	21 SC 44.955908 Scandium	39 Kasasasasasasasasasasasasasasasasasasas	57/	89/103
	4 Be 9.0121831	Mg 24.305 Magnesium	20 Ca 40.078 Calcium	Sr 87.62 Strontium	56 Ba 137.327 Barium	Radium
1.008 Hydrogen	6.94	11 Na 22.98976928 Sodium	19 K 39.0983 Potassium	Rb 85.4678 Rubidium	55 CS 132.90545196 Caesium	87 Fr 223 Francium

n	174.9668 Lutetium	Lr 266 Lawrencium
71	17 Lu	103
ک ۲b	173.054 Ytterbium	102 Nobelium
- Tm	168.93422 Thulium	Md 258 Mendelevium
Er Er	167.259 Erbium	Fm 257 Fermium
Ho	164.93033 Holmium	ES 252 Einsteinium
°6 Dy	162.500 Dysprosium	98 Cf 251 Californium
⁶⁵ Tb	158.92535 Terbium	97 BK 247 Berkelium
² DD	157.25 Gadolinium	96 Cm 247 Curium
Eu Eu	151.964 Europium	Am 243 Americium
62 Sm	150.36 Samarium	Pu 244 Plutonium
Pm	145 Promethium	Neptunium
pN o	144.242 Neodymium	92 U 238.02891 Uranium
Pr	140.90766 Praseodymium	91 Pa 231.03588 Protactinium
⁵⁸ Ce	140.116 Cerium	90 Th
La	138.90547 Lanthanum	AC 227 Actinium
Lanthanide Series		Actinide Series

MARKING GUIDE

GENERAL EDUCATION DIPLOMA BILINGUAL PRIVATE SCHOOLS SEMESTER TWO - FIREST SESSION

CHEMISTRY 2018 / 2019

Detailed Exam: Specifications for Semester Two:

	Total	16	13	16	25	70
sli	Reasoning (20%)	3	2	3	5	13
Cognitive levels	(%02) gniylqqA	8	7	8	12	35
ŭ	Knowing (30%)	5	4	5	8	22
onse (80%)	Marks	13	10	13	20	56
Extended response (80%)	No. of questions			10		
Multiple choice (20%)	Marks	3	3	3	5	14
Multip (2	No. of Items	3	. 3	3	5	14
	% gnithgiəW	23%	18%	23%	36%	100%
	Topics of the units	Chemical Energetic	Quantitative Kinetics	Quantitative Equilibrium	Electrochemistry	Total

Distribution of cognitive domains and marks.

Serial. No	Question Number	Item	Mark	Unit	Page	Cognitive domain	Out- comes
1	1	1	1	Chemical Energetic	97-99	Knowing	6.1a
2	1	2	1	Chemical Energetic	110	Applying	6.1b
3	1	3	1	Chemical Energetic	110	Reasoning	6.1b
4	1	4	1	Quantitative Kinetics	357	Knowing	7.1ci
5	1	5	1	Quantitative Kinetics	349- 350	Applying	7.1a
6	1	6	1	Quantitative Kinetics	353- 354	Applying	7.1b
7	1	7	1	Quantitative Equilibrium	373	Knowing	8.1d
8	1	8	1	Quantitative Equilibrium	371- 372	Applying	8.1e
9	1	9	1	Quantitative Equilibrium	367- 370	Reasoning	8.1a
10	1	10	1	Electrochemistry	384+ 391	Knowing	9.1b
11	1	11	1	Electrochemistry	384- 386	Reasoning	9.2e,g
12	1	12	1	Electrochemistry	385- 387	Applying	9.2d
13	1	13	1	Electrochemistry	391- 392	Applying	9.1cii
14	1	14	1	Electrochemistry	391- 392	Applying	9.1cii

o · 1	0	., .	The second secon	TT •		كالنفت ولوقائ والانت	ا ووقره
Serial no.	Question no.	item	mark	Unit	Page	Cognitive domain	Outcome
	2	15.ai	2	Chemical Energetic	100	Knowing	6.1b
	2	15.aii	3	Chemical Energetic	100	Applying	6.1c
	2	15.b	1	Chemical Energetic	101	Reasoning	6,1b
	2	16.a	1	Chemical Energetic	111-113	Knowing	6.2aii
	2	16.b	1	Chemical Energetic	111-113	Knowing	6.2aii
	2	16.c	3	Chemical Energetic	111-113	Applying	6.2aii
	2	16.d	2	Chemical Energetic	111-113	Reasoning	6.2a
	2	17.ai	1	Quantitative Kinetics	355	Applying	7.1a
	2	17.aii	2	Quantitative Kinetics	355	Applying	7.1bi
	2	17.b	2	Quantitative Kinetics	356-357	Applying	7.1c
	2	18.a	1	Quantitative Kinetics	353	Knowing	7.1c
	2	18.b	2	Quantitative Kinetics	351	Knowing	7.1a
	2	18.c	2	Quantitative Kinetics	356	Reasoning	7.1d
	2	19.a(i)	1	Quantitative Equilibrium	373	Knowing	8.1d
	2	19.a(ii)	1	Quantitative Equilibrium	373	Knowing	8.1c
	2	19.b(i)	1	Quantitative Equilibrium	374	Reasoning	8.1d
	2	19.b(ii)	2	Quantitative Equilibrium	375-376	Applying	8.1g,h
	2	19.b(iii)	1	Quantitative Equilibrium	375	Applying	8.1i
	2	20.a(i)	2	Quantitative Equilibrium	376	Reasoning	8.1j
	2	20.a(ii)	2	Quantitative Equilibrium	371	Knowing	8.1e
	2	20.a(iii)	2	Quantitative Equilibrium	372	Applying	8.1f

5						19 H 222 C	
	2	20.b	1	Quantitative Equilibrium	371/17	Reasoning	8.1e وزر
	2	21.a	1	Electrochemistry	382	Knowing	9.2c
	2	21.b	2	Electrochemistry	385	Applying	9.2g
	2	21.c	1	Electrochemistry	384-386	Applying	9.2e
	2	21.d	2	Electrochemistry	386	Applying	9.2d
	2	21.e(i)	1	Electrochemistry	382-383	Reasoning	`9.2b,ei
	2	21.e(ii)	3	Electrochemistry	381-385	Knowing	9.2b
	2	22.a	2	Electrochemistry	390-391	Applying	9.1c
	2	22.b	3	Electrochemistry	393-394	Knowing	9.3a
	2	23.a	3	Electrochemistry	388-389	Applying	9.2i,h
	2	23.b	2	Electrochemistry	386-387	Reasoning	9.2e

Question ONE TOTAL MARKS: 14

There are 14 multiple-choice items. Each correct answer is worth ONE mark.

Item	Correct option							
No.								
1	The energy of the system is decreased.							
2	$2C_{(graphite)} + H_2(g) \longrightarrow C_2H_2(g)$							
3	Enthalpy change of formation of PbO and enthalpy change of formation of Pb ₃ O ₄ .							
4	It depends on the initial reactant concentration.							
5	0.01							
6	The reaction in C is faster than in A.							
7	pH 6 8 6 4 2 0 10 20 30 40 Volume of 0.1 mol dm ⁻³ solution added / cm ³							
8	HCN and NaCN.							
9	1.0 X 10 ⁻³							
10	The reduction occurs at the cathode, in both cells.							
11	Pb is oxidised, and electrons flow to the Cu electrode.							
12	+0.47 V							
13	H_2							
14	Gas A Gas B 1 8							

Question TWO: TOTAL MARKS: 56

especial contracts							
	tem	Item 15 Total marks 6 answer	marks				
15	a(i) It is the enthalpy change when one mole of the substance is dissolved in water.						
	a(ii)	$\begin{array}{c} q = mc\Delta T \\ q = (50g) \ x \ (4.18Jg^{-1}K^{-1}) \ x \ (10.1K) \\ = 2.11 \ x \ 10^3 \ J = 2.11kJ \end{array} \qquad \begin{array}{c} \text{(1 mark)} \\ \text{Amount in moles of NH}_4\text{NO}_3 \ dissolved} = \frac{2.5g}{80.0 \text{gmol}^{-1}} = 0.03 \text{mol} \\ \hline & (1 \text{ mark)} \\ \text{Solution of } 0.03 \text{mol of NH}_4\text{NO}_3 \ required } 2.11kJ \\ \text{Solution of } 1.00 \text{mol of NH}_4\text{NO}_3 \ would \ require} = \frac{2.11}{0.03} \ kJ \\ \hline \text{The process is endothermic, so} \qquad \Delta H_{sol} = +70.3kJ \ \text{mol}^{-1} \qquad \text{(1 mark)} \\ \text{(another answer: if the student might use the mass as } (50 + 2.5 = 52.5 \ g); \\ q = 2.216 \ kJ \ , \Delta H_{sol} = +73.88 \ kJ \ \text{mol}^{-1} \) \\ \end{array}$	3				
	b	 All strong acids are completely ionised in solution (1 mark) and give 1 mole of water (1 mark). or The ionic equation representing the enthalpy of neutralisation of any strong acid by a strong base is H⁺_(aq) + OH⁻ → H₂O₍₁₎ ΔH^e = -57.6 kJ mol⁻¹ (2 mark) 	2				

General Education Diploma, Bilingual Private Schools, Semester Two, First

rst Session Chemistry, 2018/2019.

		Item 16 Total marks 7	3//		
i	tem	answer	marks		
16	a	The energy required to break one mole of Br—Br bonds in gas phase.	1		
	b	E(H—Br)	1		
-	c	$\Delta H = \text{enthalpy of bonds broken} - \text{enthalpy of bonds formed}$ $\Delta H = (E(H - H) + E(Br - Br)) - 2E(H - Br)$ $\Delta H = (+436 + 193) - (2x366)$ $\Delta H = -103 \text{ kJ}$ (1 mark)	3		
	d	energy $2HBr_{(g)}$ $H_{2(g)} + Br_{2(g)}$ $2HBr_{(g)}$ $H_{2(g)} + Br_{2(g)}$ $H_{2(g)} + Br_{2(g)}$ Reaction Pathway	2		
		OI .			
	1 mark for drawing the diagram and 1 mark for writing labels				

		12 × 600	\	
		Item 17 Total marks 5		
i	tem	غرار ترق الفنزيتين والتعاليات المستعددة المستعدد المستع	marks	
17	a(i)	In experiments, 1 and 2 [OH] has doubled and the rate of reaction has doubled so the reaction is first order with respect to [OH]. Another answer: The student can show mathematical expression and calculation	1	
	a(ii) In experiments 1 and 3 the concentration of ethanal has doubled and the rate of reaction has doubled. so the reaction is first order fo ethanal. In experiment 2 and 3 both concentration has changed (1 mark) Overall the reaction is second order and the rate equation is: Or: Rate = k[CH ₃ CHO][OH ⁻] (1 mark)			
	b	$k = \frac{0.693}{t_{1/2}}$ (1 mark) $k = \frac{0.693}{4.3 \times 10^5} = 1.6 \times 10^{-6} \text{ s}^{-1}$ (1 mark)	2	

	Item 18 Total marks 5					
i	tem	answer	3	marks		
18	a	The half-life of a reaction is the time taken for the concentration of a reactant to decrease to half its initial value.				
	b	The following factors affect the rate of a reaction: [only two] { concentration or pressure – temperature – catalysts – state of division – nature of the solvent – light }		2		
	c	From experiment 1: $ \therefore R = k [X] [Y] $ $ \therefore K = \frac{\text{rate}}{[X][Y]} = \frac{1.35 \times 10^{-7}}{(0.1)(0.005)} = 0.27 \times 10^{-3} \text{ mol}^{-1} \text{ dm}^{-3} \text{ s}^{-1} $ From experiment 2: $ \therefore \text{ rate} = k [X] [Y] $ $ \therefore 5.4 \times 10^{-7} = (0.27 \times 10^{-3}) (0.2) [Y] $ $ \therefore [Y] = 0.01 \text{ mol dm}^{-3} $	1 mark 1 mark	2		

		Item 19 Total marks 6	
i	tem	answer	marks
19	a(i)	Phenolphthalein	1
	a(ii)	С	1
	b(i)	$\mathbf{K}_{\mathrm{sp}} = \left[\mathbf{F}\mathbf{e}^{3+}\right] \left[\mathbf{OH}^{-}\right]^{3}$	1
	b(ii)	$K_{sp} = \left[Fe^{3+}\right] \left[OH^{-}\right]^{3}$ $6 \times 10^{-38} = 27 \text{ x}^{4}$ $x = \sqrt[4]{\left(\frac{6 \times 10^{-38}}{27}\right)} = 2.17 \times 10^{-10}$ $\therefore \left[Fe^{3+}\right] = 2.17 \times 10^{-10} \text{ mol dm}^{-3}$ One mole of $Fe(OH)_{3}$ dissolves to give one mole of Fe^{3+} ions, so the solubility of $Fe(OH)_{3}$ is 2.17×10^{-10} mol dm ⁻³ (1 mark)	2
	b(iii)	Decreases	1

		Item 20 Total marks 7	القطاق
item		answer	marks
20	a	One whose pH remains nearly constant on the addition of small quantities of acid or base. Each underlined answer is worth 1 mark	2
	b		3
		$pH = -\log_{10}(3.6 \times 10^{-5}) = 4.44$ Or $pH = pK_a + \log ([base or salt] / [acid])$ $pK_a = -\log (-1.8 \times 10^{-5}) = 4.74$ $pH = 4.74 + \log(0.1/0.2)$ $pH = 4.43$ (1 mark) (1 mark) (1 mark) (1 mark) (1 mark) (1 mark)	
	c	- The extra $H_{(aq)}^+$ ions react with $CH_3COO_{(aq)}^-$ ions (1 mark) and the equilibrium moves to the left to remove the added $H_{(aq)}^+$ (1 mark). - The $H_{(aq)}^+$ ions react with $CH_3COO_{(aq)}^-$ ions (1 mark) to form the weak acid $CH_3COOH_{(aq)}$.(1 mark) - The equilibrium moves to the left (1 mark) to prevent the effect of adding strong acid, $H_{(aq)}^+$.(1 mark) - The equilibrium moves to the left $H_{(aq)}^+ + CH_3COO_{(aq)}^- \longrightarrow CH_3COOH_{(aq)}^-$ Any answer from above mark is given. (2 marks)	2

		Item 21 Total marks 13	//
item		answer Charles	marks
21	a	Salt bridge.	1
	b	Half-cell oxidation reaction : $M_{(s)} \longrightarrow M_{(aq)}^{2+} + 2 e^{-}$	3
		$(\frac{1}{2} \operatorname{mark}) (\frac{1}{2} \operatorname{mark}) (\frac{1}{2} \operatorname{mark})$	
		half-cell reduction reaction: $Ag_{(aq)}^+ + e^- \longrightarrow Ag_{(s)}$	
		$(\frac{1}{2} \operatorname{mark}) (\frac{1}{2} \operatorname{mark}) (\frac{1}{2} \operatorname{mark})$	
	c	$\mathbf{M}_{(\mathbf{s})} \mathbf{M}_{(\mathbf{a}\mathbf{q})}^{2+} \mathbf{A} \mathbf{g}_{(\mathbf{a}\mathbf{q})}^{+} \mathbf{A} \mathbf{g}_{(\mathbf{s})}^{-}$	2
	d		3
		(1 mark)	
		$\mathbf{E}_{\text{cell}}^{\theta} = \mathbf{E}_{\text{(Ag)}}^{\theta} - \mathbf{E}_{\text{(M)}}^{\theta}$	
		$1.25 = 0.80 - E_{(M)}^{\theta}$ (1 mark)	
		$\mathbf{E}_{(\mathbf{M})}^{\theta} = -0.45 \mathbf{V} \qquad \qquad \mathbf{(1 mark)}$	
		$\boxed{\mathbf{Or} \mathbf{E}^{\Theta}_{\text{cell}} = \mathbf{E}_{\text{oxidation}} - \mathbf{E}_{\text{reduction}}} \qquad (1 \text{ mark})$	
		$1.25 = 0.80 - E_{\text{oxidation}} \qquad (1 \text{ mark})$	
		$\mathbf{E}_{\text{reduction}} = -0.45 \text{ V} \qquad (1 \text{ mark})$	
		The following formulae could be used:	
		$E^{\Theta}_{\text{cell}} = E_{\text{cathode}} - E_{\text{anode}} \qquad (1 \text{ mark})$	
	ei	- From standard hydrogen electrode to Ag electrode.	1
		- From M to Ag - From left to right	
		- The direction of elections will be the same (unchanged)	
		Any answer from above mark is given. (1 mark)	
	eii	Pressure: 1.00atm, Temperature: 208 V (25 °C)	3
		Temperature: 298 K (25 °C) $[H^+] = 1.00 \text{ mol dm}^{-3}$.	
		Each condition is worth 1 mark	

Item 22 Total marks 7						
item		answer	marks			
22	a	$\frac{m}{69.72} = \frac{I \times t}{zF} \text{or} n = (I.t) / (zF) \qquad (1 \text{ mark})$	3			
		$\frac{6.5}{69.72} = \frac{I \times 1.5 \times 60 \times 60}{3 \times 96500} $ (1 mark)				
		I = 5.0 A (1 mark)				
	b	i. D ii. A iii. E iv. B	2			
		Each answer $(\frac{1}{2} \text{ mark})$				
	c	Disagree, (1 mark)	2			
		 Because Ag⁺(aq) reacts with Cu(s). Using E^θ values: E_{cell} = E^θ (Ag⁺ / Ag) - E^θ (Cu²⁺ / Cu) = +0.80 - (+0.34) = +0.46 V The reaction is feasible between Ag⁺(aq) and Cu(s): Ag⁺(aq) + Cu(s) Ag (s) + Cu²⁺ (aq) Ag⁺(aq) is strong oxidising agent. Cu(s) is more reactive (or strong reducing agent or displaces Ag⁺(aq)) Any answer from above mark is given. (1 mark) 				

This is the end of the Marking Guide