

امتحان دبلوم التعليم العام للمدارس الخاصة (ثنائية اللغة) للعام الدراسي ١٤٤٠/١٤٣٩ هـ - ٢٠١٨ / ٢٠١٩ م الدور الثاني - الفصل الدراسي الأول

تنبيه: • المادة: الكيمياء.

الأسئلة في (١٦) صفحة.

زمن الإجابة: ثلاث ساعات.

الإجابة في الورقة نفسها.

تعليمات مهمة:

- يجب الحضور إلى قاعة الامتحان قبل عشر دقائق على الأقل من بدء زمن الامتحان.
 - يجب إحضار أصل ما يثبت الهوية وإبرازها للعاملين بالامتحانات.
- يجب الالتزام بالزي (الدشداشة البيضاء والمصر أو الكمة للذكور)
 والزي المدرسي للطالبات ، ويستثنى من ذلك الدارسون من غير
 العمانيين بشرط الالتزام بالذوق العام ، ويمنع على جميع المتقدمات
 ارتداء النقاب داخل المركز وقاعات الامتحان.
- يحظر على الممتحنين اصطحاب الهواتف النقالة وأجهزة النداء الآلي وآلات التصوير والحواسيب الشخصية والساعات الرقمية الذكية والآلات الحاسبة ذات الصفة التخزينية والمجلات والصحف والكتب الدراسية والدفاتر والمذكرات والحقائب اليدوية والآلات الحادة أو الأسلحة أياً كان نوعها وأي شيء له علاقة بالامتحان.
- يجب على الممتحن الامتثال لإجراءات التفتيش داخل المركز طوال أيام الامتحان.

يجب على الممتحن التأكد من استلام دفتر امتحانه، معلقا بعلاف	-
بلاستيكي شفاف وغير ممزق ، وهو مسؤول عنه حتى يسلمه لمراقبي	
اللجنة بعد الانتهاء من الإجابة.	
يجب الالتزام بضوابط إدارة امتحانات دبلوم التعليم العام وما في	-
مستواه وأية مخالفة لهذه الضوابط تعرضك للتدابير والإجراءات	
والعقوبات المنصوص عليها بالقرار الوزاري رقم ٥٨٨ / ٢٠١٥.	
يقوم المتقدم بالإجابة عن أسئلة الامتحان المقالية بقلم الحبر (الأزرق	_
أو الأسود).	
يقوم المتقدم بالإجابة عن أسئلة الاختيار من متعدد بتظليل	-
الشكل (🔲) وفق النموذج الآتي:	
عاصمــة سلطنة عمـــان هي:	س
🔲 القاهرة 📗 الدوحة	
🗖 مسقط 💮 أبوظبي	

ملاحظة: يتم تظليل الشكل () باستخدام القلم الرصاص وعند

 \bigcirc

×

الخطأ، امسح بعناية لإجراء التغيير.

🗖 غير صحيح 🗖

Academic Year: 2018/2019

مُسُودة، لا يتم تصحيحها

Question 1: Multiple Choice Items

(14 marks)

		are 14 multiple-choice items worth two marks each. in the bubble () next to the correct answer for each of the following items.
1)	Wha	at is the type of bond between the metal and the ligand in a complex?
		an ionic bond.
		a metallic bond.
		a hydrogen bond.
		a coordinate covalent bond.
2)	Whi	ch of the following is correct about the Fe(C ₂ O ₄) ₃ ³⁻ complex ion?
		Six-membered ring formed between ligand $C_2O_4^{\ 2-}$ and iron ion.
		Six dative covalent bonds are formed in this complex ion.
		The formation of this complex ion decreases its stability.
		The oxidation number of the Fe in this complex ion is +2.
3)	Whi	ch of the following statements about [CuCl ₄]Cl ₂ complex compound is correct?
		The acidic ligand is Cl ⁻ .
		The oxidation number of copper in this complex is +4.
		The complex formed when the ligands are attracted to the metal ions.
		Six dative covalent bonds formed between ligands and the metal ion.
4)	Whi	ch of the following statements is <u>incorrect</u> about bromination of the benzene ring?
		It is an electrophilic addition reaction.
		The electrophile in this reaction is the bromine ion.
		Further bromination to bromobenzene can occur.
		The role of aluminium bromide in this reaction is to produce the electrophile.

5) What is the product from the reaction of benzene with halogenoalkane in the presence of halogen carrier?

6) Benzene reacts with C_3H_7COCI in the presence of a suitable catalyst. What is the structural formula of the product you would expect from this reaction?

- 7) Which of the following statements about the reactions of acyl chlorides is correct?
 - They undergo electrophilic substitution.
 - They react with alcohols to produce esters.
 - They react with amines to produce amino acids.
 - They react readily with water at room temperature to produce alcohols.
- 8) What does X represent in the following reaction?

$$\mathsf{CH_3CH_2CH_2COCI} + \mathsf{C_6H_5OH} \xrightarrow{\qquad \qquad } \mathsf{CH_3CH_2CH_2COOC_6H_5} \quad + \quad \mathsf{HCI}$$

- ☐ H₂SO₄ ☐ NaOH
- □ CH₃OH
 □ HCOOH
 □

The following table shows four carboxylic acids. Study it to answer question 9.

A	В	C	D
Cl O O OH	CH ₃ -CH ₂ CH ₂ COOH	F—C-CH ₂ -C OH	CH ₃ CH ₂ -CH ₂ CH ₂ C OH

- 9) What is the correct order for compounds (A, B, C and D) according to the acid strength from the weakest to the strongest carboxylic acid?
 - \bigcirc C < A < B < D.

 \bigcirc B < D < C < A.

- **10)** Diluted sulfuric acid was added to phenyl amine until the reaction was just completed. What the resulting mixture will be like?
 - Insoluble in water.

Soluble in organic solvent.

Covalent compound.

○ White crystalline solid.

Academic Year: 2018/2019

Question 1 continued

11) Compound X of a molecular formula C_8H_8 N undergoes reduction reaction to form the following compound. What is the structural formula of X?

12) What is the sequence of reagents that will accomplish the synthesis of phenylamine from the benzene as the following reaction?

Reaction 1	Reaction 2	Reaction 3	
HNO ₃ , H ₂ SO ₄	Sn , HCl	NaOH	
HNO ₃ , H ₂ SO ₄	Sn , HCl	H ₂ O	
Fe , HCl	HNO ₃ , H ₂ SO ₄	H ₂ O	
HNO ₃	Sn , HCl	NaOH	

13) How many repeat units are in the following polymer?

 $\hbox{--}[-NH\hbox{-}(CH_2)_5\hbox{-}CO\hbox{-}NH\hbox{-}(CH_2)_5\hbox{-}CO\hbox{-}NH\hbox{-}(CH)_5\hbox{-}CO\hbox{-}NH\hbox{-}(CH_2)\hbox{-}CO\hbox{-}]_n\hbox{--}$

O 2

 \bigcirc 4

 \bigcirc 5

14) What is the repeat unit of terylene, that formed from $HO_2CH_2CH_2OH$ and $HO_2C-C_6H_4-CO_2H$?

Question 2: Extended Questions

(56 marks)

Write your answer for each of the following questions in the space provided. Be sure to show all your work, including the correct units where applicable.

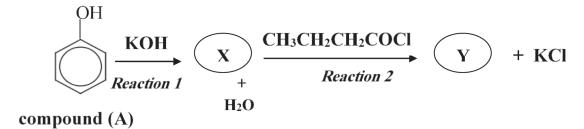
15) The structure of a complex ion is shown below. Study it to answer the following questions.

- a. Which element, cobalt or calcium has higher density?
- **b.** Write the name of the shape of this complex ion.
- c. This complex ion contains monodentate ligands.
 - (i) What is meant by the term ligands?
 - (ii) Explain why these ligands are considered as monodentate ligands.
- d. Write the chemical formula of the following:
 - (i) The metal ion of this complex ion.
 - (ii) The ligand of this complex ion.

Wri	te the electronic configuration of cobalt ion using [Ar] to represent the argon e.				
	Il the ligands of this complex ion are replaced with four ligands of water lecules to form new complex ion with same cobalt ion.				
(i)	What will be the name of the shape of the new complex ion?				
(ii)	Which complex (first or new complex ion) will have stronger co-ordinate bonds? Explain your answer.				

16) A student makes the following diagram to show some reaction series of benzene. Study it and answer the following questions

- a. Why all the carbon-carbon bonds in benzene have the same length?
- **b.** Describe the role of $AlCl_3$ with reagent **M** in reaction **1**.
- **c.** Draw the structure of the intermediate ion formed when the electrophile attacks the benzene ring in reaction **1**.
- d. Write the IUPAC name of compound Q.
- ${f e.}~~$ Draw the structural formula of the organic compound ${f R.}~$


		e student made a mistake in reaction 4 , help him to determine it and suggest right way to carry out the reaction.
	(i)	Mistake:
	(ii)	Right reaction:
17)		e with two substituents –OH and –NO ₂ attached to two carbon atoms, es three possible products. Draw them.

18) Four compounds are shown in the table below. Study them to answer the following question..

Compound	A	В	С	D
Formula	CH ₃ CH ₂ CH ₂ OH	CH ₃ CH ₂ COOH	OH I	ÇOCI

- **a.** Explain why compound **B** is stronger acid than compound **A**.
- **b.** Write the structural formulae of the organic products formed in the following reactions:
 - (i) **B** with Na.
 - (ii) C with D
 - (iii) D with water
- **c.** Both compounds **D** and CH₃CH₂Cl of equal concentration reacted with water individually in different test tubes. Which compound can react faster with water? Explain your answer.

19) A series of two chemical reactions, was carried out, as in the flowchart below. Study it to answer the following questions.

- a. Write two properties of acyl chlorides.
- $\boldsymbol{b.}$ To which family of organic compounds does compound \boldsymbol{Y} belong?
- ${f c.}$ Draw the structural formulae of the organic compounds represented by (${f X}$ and ${f Y}$).

^:_____

Y:_____

20) Study the following compounds to answer the questions below.

a. Why compound $\bf A$ is a stronger base than NH_3 ?

b. Complete the following reaction:

 ${f c.}$ Explain how peptides bonds formed in compound ${f C.}$

21) N-ethylethanamide can be prepared as follows:

$$H_3C$$
 \longrightarrow H_3C \longrightarrow H_3C \longrightarrow H_3C \longrightarrow H_3C \longrightarrow H_3C \longrightarrow $N-ethylethanamide$

- a. Draw the structural formula of compound X.
- **b.** Write the structural formulae of the organic products in the following reactions:
 - (i) Hydrolysis of N-ethylethanamide using NaOH.
 - (ii) Reduction of N-ethylethanamide using ${\rm LiAlH_4}$.
- **c.** N-ethylethanamide is a base.
 - (i) Draw the structural formulae of the products produced from the hydrolysis of N-ethylethanamide in dilute sulfuric acid.
 - (ii) Which is less basic N-ethylethanamide or diethylamine? Explain your answer.

22) The following grid shows three polymerisation reactions. Study it and answer the following questions.

Reaction 1	$n[A] \longrightarrow \begin{pmatrix} CH_3 \\ O \end{pmatrix}_n + (2n-1) H_2O$
Reaction 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Reaction 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

- a. Draw the structural formulae for the following:
 - (i) Monomer A in reaction 1:
 - (ii) Polymer B in reaction 2:
- **b.** What is the type of polymerisation in:
 - (i) Reaction 2: _____
 - (ii) Reaction 3: _____

c. What are the intermolecular forces that are holding the chains of the polymer in reaction 3?
d. The product X is a small molecule eliminated during the polymerisation reaction 2. What is the name or the formula of X?
e. What is the difference between the two types of condensation polymers?
f. What is the functional group found in the polymer formed in reaction 1?

23) Kevlar is a polymer which is five times stronger than steel. It can align side by side with other chain.

- a. What is the type of bond formed between the two chains in this polymer?
- **b.** Is Kevlar polymer type I or type II?
- **c.** Draw the monomer(s) that form(s) this polymer.

[End of Examination]

PERIODIC TABLE OF THE ELEMENTS

2 He 4002602 Hellum 10 Ne on Neon Neon Neon Neon Neon 39948 Argon	36 Krypton	54 Xenon Xenon	Rn 222 Radon	UUO
9 18.998403163 Fluorine 17 C 35.45 Chorine	Bromine	53	At 210 Astatine	Ununseptium
15.999 Oxygen 16.999 Suffur Solfur So	34 Se 78.971 Selenium	52 Te 127.60 Tellurium	P0 209 Polonium	116 LV 293 Livermorium
7 N 14.007 Nitrogen 15.007 Nitrogen Phosphorus	33 AS 74,921595 Arsenic	51 Sb 121.760 Antimony	83 Bi 208.98040 Bismuth	Uup 289 Ununpentium
6 C 12011 Carbon 144 S S S S S S S S S S S S S S S S S S	32 Ge 72.630 Germanium	50 Sn 118.710	82 Pb 207.2 Lead	114 Flerovium
5 B 10.81 Boron 13 A 26.9815385 Aluminium	31 Ga 69.723 Gallium	49 L14.818 Indium	204:38 Thallium	Uut
	30 Zn 65.38 Zinc	48 Cd 112.414 Cadmium	80 HQ 200.592 Mercury	Cn 285
	29 Cu 63.546 Copper	Ag 107.8682 Silver	Au 196.966569 Gold	Rg 281 Roentgenium
Atomic Mass Name	28 S8.6934 Nickel	Pd 106.42 Palladium	78 Pt 195.084 Platinum	DS 281 Darmstadtium
	27 CO 58.933194 Cobalt	Rhodium	77	109 Mt 278 Meitnerium
1.008 ← Hydrogen ←	26 Fe 55.845 Iron	Ruthenium	76 OS 190.23 Osmium	Hassium
<u></u>	25 Mn 54.938044 Manganese	TC 98 Technetium	75 Re 186.207 Rhenium	Bohrium
Atomic Numbel Symbo	24 Cr 51,9961 Chromium	Mo 95.95 Molybdenum	74 W 183.84 Tungsten	Sg 269 Seaborgium
Atomi	23 V 50.9415 Vanadium	41 Nobium	73 Ta 180.94788 Tantalum	Db 268 Dubnium
	22 Ti 47.867 Titanium	40 Zr 91.224 Zirconium	Hafnium	Rt 267 Rutherfordium
	21 SC 44.955908 Scandium	39 K8.90584 Yttrium	57/	103
4 8e 90121831	20 Ca 40.078 Calcium	Sr 87.62 Strontium	56 Ba 137.327 Barium	Radium
1 H 1.008 Hydrogen 3 Li 2.89976928 Sodium Sodium	19 K 39.0983 Potassium	Rb 85.4678 Rubidium	55 CS 132.90545196 Caesium	87 Francium

71 LU 174.9668 Lutetium	Lr 266 Lawrencium				
70 Yb 173.054 Ytterbium	No 259 Nobelium				
69 Tm 168.93422 Thulium	Md 258 Mendelevium				
68 Er 167.259 Erbium	Fm 257 Fermium				
67 HO 164.93033 Holmium	ES 252 Einsteinium				
66 Dy 162.500 Dysprosium	Of 251 Californium				
65 Tb 158.92535 Terbium	97 Bk				
Gd 157.25 Gadolinium	96 Cm 247 Curium				
63 EU 151.964 Europium	Am 243 Americium				
62 Sm 150.36 Samarium	Pu 244 Plutonium				
Pm 145 Promethium	Np 237 Neptunium				
60 Nd 144.242 Neodymium	92 U 238.02891 Uranium				
59 Pr 140.90766 Praseodymium	91 Pa 231.03588 Protactinium				
58 Ce 140.116 Cerium	90 Th 232.0377 Thorium				
57 La 138.90547 Lanthanum	AC 227 Actinium				
Series Series Actinide Series					

MARKING GUIDE

GENERAL EDUCATION DIPLOMA BILINGUAL PRIVATE SCHOOLS SEMESTER ONE - SECOND SESSION

CHEMISTRY 2018 / 2019

General Education Diploma, Bilingual Private Schools, Semester One, Second Session, Chemistry/2018/2019.

्राधिकार्क केन्द्रक स्थानिक

Detailed Exam: Specifications for Semester One:

	Total	15	13	14	15	13	70
S. U.S. W. S.	gninossaЯ (20%)	3	2	3	3	2	13
Cognitive levels	(%02) gniylqqA	7	7	7	7	7	35
00	(%0£) gniwonX	5	4	4	5	4	22
nse (80%)	Marks	12	10	11	12	11	56
Extended response (80%)	No. of questions	10					
Multiple choice (20%)	Marks	3	3	3	3	2	14
Multip (2	No. of Items		3	3	3	2	14
	% anithaieW	22%	18%	20%	22 %	18%	100%
	Topics of the units	An introduction to the chemistry of transition elements	Arenes and phenols	Carboxylic acids and derivatives	Nitrogen compounds	Polymerization	Total

General Education Diploma, Bilingual Private Schools, Semester One, Second Session, Chemistry, 2018/2019.

Distribution of cognitive domains and marks.

Serial. No	Question	Item	Mark	Unit	Page	Cognitive	
Serial, 140	Number	Item	Maik		1 age	domain	comes
1	1	1	1	Transition elements	403	Knowing	1.3b.i
2	1	2	1	Transition elements	399- 408	Applying	1.3a+ 1.3bi
3	1	3	1	Transition elements	403	Applying	1.3a+ 1.3bi
4	1	4	1	Arenes and phenols	423	Knowing	2.1.d.i
5	1	5	1	Arenes and phenols	423	Applying	2.1eiii
6	1	6	1	Arenes and phenols	426	Applying	2.1diii
7	1	7	1	Carboxylic acids and derivatives	443- 444	Knowing	3.2c,b, c,e
8	1	8	1	Carboxylic acids and derivatives	444	Applying	3.2c
9	1	9	1	Carboxylic acids and derivatives	441	Reasoning	3.1c,d
10	1	10	1	Nitrogen compounds	452	Knowing	4.1ai
11	1	11	1	Nitrogen compounds	458	Applying	4.1a
12	1	12	1	Nitrogen compounds	458	Reasoning	4.1a
13	1	13	1	Polymerization	476	Applying	5.3d
14	1	14	1	Polymerization	474	Reasoning	5.3c

General Education Diploma, Bilingual Private Schools, Semester One, Second Session, Chemistry, 2018/2019.

Serial. No	Question Number	Item	Mark	Unit	Page	Cognitive domain	Output
	2	15.a	1	Transition elements	399	Knowing	1.2c
	2	15.b	1	Transition elements	404	Knowing	1.3bii
	2	15.c(i)	1	Transition elements	403	Knowing	1.3bi
	2	15.c(ii)	1	Transition elements	403+ 408	Knowing	1.3bi
	2	15.d(i)	1	Transition elements	399+	Applying	1.2a+
					403		1.3a
	2	15 4(::)	1	Transition elements	403+	Annlying	1.3bi
		15.d(ii)			408	Applying	1.501
	2	15.e	2	Transition elements	403	Applying	1.3a+ 1.3bi
	2	15.f	1	Transition elements	398-399	Applying	1.2b, d
	2	15.g(i)	1	Transition elements	398-399	Applying	1.3bii
	2	15.g(ii)	2	Transition elements	404	Reasoning	1.3a+ 1.3bi
	2	16.a	1	Arenes and phenols	418	Knowing	2.1c
	2	16.b	1	Arenes and phenols	426	Knowing	2.1ei
	2	16.c	1	Arenes and phenols	426	Knowing	2.1eiii
	2	16.d	1	Arenes and phenols	430	Applying	2.1div
	2	16.e	1	Arenes and phenols	421	Applying	2.1b
	2	16.f(i)	1	Arenes and phenols	424+ 429	Reasoning	2.1g
	2	16.f(ii)	2	Arenes and phenols	424+ 429	Reasoning	2.1g
	2	17	3	Arenes and phenols	420+ 421	Applying	2.1c

General Education Diploma, Bilingual Private Schools, Semester One, Second Session, Chemistry, 2018/2019

Serial. No	Question Number	Items	Mark	Unit	Page	Cognitive domain	outcome
	2	18.a	1	Carboxylic acids and derivatives	441	Knowing	3.1c
	2	18.b(i)	1	Carboxylic acids and derivatives	441	Applying	3.1ai
	2	18.b(ii)	1	Carboxylic acids and derivatives	443-447	Applying	3.2c
	2	18.b(iii)	1	Carboxylic acids and derivatives	443-447	Applying	3.2c
	2	18.c	2	Carboxylic acids and derivatives	443	Reasoning	3.1d
	2	19.a	2	Carboxylic acids and derivatives	443	Knowing	3.2a
	2	19.b	1	Carboxylic acids and derivatives	444	Applying	3.2c
	2	19.c	2	Carboxylic acids and derivatives	444	Applying	3.2c
	2	20.a	1	Nitrogen compounds	453	Knowing	4.1c
	2	20.b	2	Nitrogen compounds	456	Knowing	4.1dii
	2	20.c	1	Nitrogen compounds	464	Knowing	4.2f
	2	21.a	1	Nitrogen compounds	459	Applying	4.2a
	2	21.b(i)	2	Nitrogen compounds	460	Applying	4.2ci
	2	21.b(ii)	1	Nitrogen compounds	460	Applying	4.2cii
	2	21.c(i)	2	Nitrogen compounds	459	Applying	4.2c
	2	21.c(ii)	2	Nitrogen compounds	453-459	Reasoning	4.1c+ 4.2b

General Education Diploma, Bilingual Private Schools, Semester One, Second Session, Chemistry, 2018/2019.

Serial. No	Question Number	Items	Mark	Unit	Page	Cognitive domain	outcome
	2	22.a(i)	1	Polymerization	476	Applying	5.3d
	2	22.a(ii)	1	Polymerization	475	Applying	5.3c
	2	22.b(i)	1	Polymerization	474	Applying	5.2b
	2	22.b(ii)	1	Polymerization	470	Applying	5.2a
	2	22.c	1	Polymerization	470	Knowing	5.1b
	2	22.d	1	Polymerization	475	Applying	5.3a
	2	22.e	1	Polymerization	475	Knowing	5.3b
	2	22.f	1	Polymerization	475	Applying	5.3a
	2	23.a	1	Polymerization	476-477	Knowing	5.1b
	2	23.b	1	Polymerization	476-477	Knowing	5.3bii
	2	23.c	1	Polymerization	476	Reasoning	5.3d

Question ONE TOTAL MARKS: 14

There are 14 multiple-choice items. Each correct answer is worth ONE mark.

Item No.	Correct option
1	a coordinate covalent bond
2	Six dative covalent bonds are formed in this complex ion.
3	The complex formed when the ligands are attracted to the metal ions.
4	It is an electrophilic addition reaction.
5	CH(CH ₃) ₂
6	O II CCH ₂ CH ₂ CH ₃
7	They react with alcohols to produce esters
8	NaOH
9	D < B < A < C.
10	white crystalline solid
11	CN
12	HNO ₃ , H ₂ SO ₄ Sn, HCl NaOH
13	4
14	O—CH2CH2—O—C————————————————————————————

General Education Diploma, Bilingual Private Schools, Semester One, Second Session, Chemistry, 2018/2019.

Question TWO: TOTAL MARKS: 56

\		Item 15 Total marks 12	<i>3//</i>
iten	1	answer	marks
15 a	ı	Cobalt / Co	1
b)	Octahedral	1
C	e(i)	Ligands are bases, and also nucleophiles.They contain lone pair of electrons to bond to the metal to form complex ion.	1
		Any answer from above mark is given.	
C	e(ii)	 Because the ligands (NH₃) join by one bond to the metal ion (Co³⁺). Because the ligands (NH₃) are attached by one coordinate bond to the metal ion (Co³⁺). Because the ligands (NH₃) contain one group that has a lone pair of electrons. Any answer from above mark is given. 	1
	d(i)	Co ³⁺	1
	d(ii)	NH ₃	1
		6 / six (1 mark)	2
		 each ligand (NH₃) and the metal ion Co³⁺. Because there are 6 monodentate ligand (NH₃) in the complex ion. Because the number of atoms surrounding the central atom (Co) is 6. Because the complex ion has 6 pairs of electrons. Any answer from above mark is given. (1 mark) 	
1	 f	[Ar]3d ⁶	1
l —	g(i)	Tetrahedral	1
	g(ii)	First complex ion Because the ligand (NH ₃) is stronger than the ligand (H ₂ O). More nucleophilic so the donation of pairs of electrons to the metal will be more and so they will form stronger co-ordinate bonds. The strength of attraction of the ligand NH ₃ is much more than that of H ₂ O so it will form stable complex ion because it forms strong bond to the metal ion. Because there is an additional entropy effect that adds to their stability. Because the ligand NH ₃ will increase the entropy. (1mark) Any answer from above mark is given.	2

it	em	Item 16 Total marks 7 answer	marks
16	a	 Because the π electrons (or double bonds) are delocalised (or in resonance). Electrons are evenly distributed. Any answer from above mark is given. 	1
	b	 It introduces a permanent dipole on CH₃Cl molecule to form CH₃⁺ AlCl₃ + CH₃Cl → AlCl₄⁻ + CH₃⁺ AlCl₃ + CH₃Cl → CH₃δ⁺ - AlCl₄δ⁻ Any answer from above mark is given. 	1
	С	H CH ₃	1
	d	1,2-dimethylbenzene	1
	e	OH OR COOH	1
	f(i)	Using the reagent and condition (or Cl ₂ , UV light) will not produce that product	1
	f(ii)	Cl ₂ , AlCl ₃ Cl ₂ CH ₂ CH ₂ CH ₂ CH ₂ - using Cl ₂ , AlCl ₃ will produce the product (4-chloromethylbenzene) - using Cl ₂ , UV light/boiling will produce (chloromethyl)benzene Any answer from above mark is given.	1
		Item 17 Total marks 3	
ite 17	em	answer OH OH OH OH OH OH OH OH OH O	marks 3
		NO ₂ NO ₂ NO ₂ 3 marks: 1 mark for each compound	

		المنقبات تارقات العامال	[[ووفق
i	tem	answer	marks
18	a	 Because the negative charge on the anion can be delocalies dover two electronegative oxygen atoms. Because carboxylic acids are stronger acids than alcohols. Any answer from above mark is given. 	1
	b(i)	CH ₃ CH ₂ COO ⁻ Na ⁺	1
	b(ii)		1
	b(iii)	соон	1
	С	D (1 mark) Because the electronegativity of the oxygen and the easily polarized C= O double bond, have a dramatic effect on the reactivity (1 mark)	2

		Item 19 Total marks 5	
item		answer	
19	a	Are liquid, fume in moist air, immiscible with water, react slowly with water, eventually dissolve, they are not hydrogen bonded, (full marks for any two answers). Any other correct property mark is given.	2
	b	Ester	1
	С	OCOCH ₂ CH ₂ CH ₃ X: Y: Each answer worth 1 mark.	2

		Item 20 Total marks 4	الفروني الله
i	tem	answer	marks
20	a	 Electron-donating alkyl groups (CH₃) attached to the nitrogen atom increase the basicity of amine (CH₃CH₂CH₂NH₂). Electron donation from an alkyl group (or CH₃) will encourage dative bond formation. Any answer from above mark is given. 	1
	b	$C_6H_5N\equiv NCl + 2H_2O$ or $C_6H_5N_2Cl + 2H_2O$ or 2 marks: Each product 1 mark	2
	c	 Two or more amino acids can undergo condensation reaction between themselves. By losing H from amine group and OH from carbonyl group. Any answer from above mark is given. 	1

i	tem	answer	marks
21	a(i)	CH ₃ CH ₂ NH ₂	1
v 30	b(i)	H_3C $\stackrel{O}{\longleftarrow}$ + $CH_3CH_2NH_2$	2
		2marks: each product 1 mark	
	b(ii)	H ₃ C—CH ₂	1
		NHCH ₂ CH ₃	
	c(i)	CH ₃ COOH + +NH ₃ CH ₂ CH ₃ 2marks: each product 1 mark	2
	c(ii)	N-ethylethanamide (1 mark)	2
		 Because in diethylamine, the electron-donating alkyl groups attached to the nitrogen atom increase the basicity. In N-ethylethanamide the lone pair of electrons on nitrogen atom is less available. In diethylamine the lone pair of electrons on nitrogen will be more available to form a dative bond with a proton. 	
		Any answer from above mark is given. 1mark	

General Education Diploma, Bilingual Private Schools, Semester One, Second Session, Chemistry, 2018/2019.

		Item 22 Total marks 8	
it	em	answer	marks
22	a(i)	HOCH(CH₃)COOH	1
	a(ii)		1
	b(i)	Condensation reaction	1
	b(ii)	Addition reaction	1
	c	Vander Waals forces	1
	d	Water (H ₂ O)	1
	e	The direction of successive functional groups along the chain	1
	f	Ester	1

		Item 23 Total marks 3	
ite	m	answer	marks
23	a	Hydrogen bonds	1
	b	Type II	1
	c		1
		H ₂ N—NH ₂ and HO—C—OH or CIO—C—OCI 1 mark: each monomer 1/2 mark	

This is the end of the Marking Guide