

امتحان دبلوم التعليم العام للمدارس الخاصة (ثنائية اللغة) للعام الدراسي ١٤٤١/١٤٤٠ هـ - ٢٠١٩ / ٢٠٢٠ م الدور الأول - الفصل الدراسي الأول

الكيمياء	المادة:	•	تنىيە:
** **			** *

• زمن الإجابة: ثلاث ساعات.

• الأسئلة في (١٤) صفحة.

• الإجابة في الورقة نفسها.

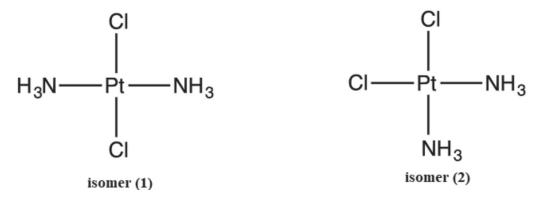
تعليمات مهمة:

- يجب الحضور إلى قاعة الامتحان قبل عشر دقائق على الأقل من بدء زمن الامتحان.
 - يجب إحضار أصل ما يثبت الهوية وإبرازها للعاملين بالامتحانات.
- يجب الالتزام بالزي (الدشداشة البيضاء والمصر أو الكمة للذكور) والزى المدرسي للطالبات ، ويستثنى من ذلك الدارسون من غير العمانيين بشرط الالتزام بالذوق العام، ومنع على جميع المتقدمات ارتداء النقاب داخل المركز وقاعات الامتحان.
- يحظر على الممتحنين اصطحاب الهواتف النقالة وأجهزة النداء الآلي وآلات التصوير والحواسيب الشخصية والساعات الرقمية الذكية والآلات الحاسبة ذات الصفة التخزينية والمجلات والصحف والكتب الدراسية والدفاتر والمذكرات والحقائب اليدوية والآلات الحادة أو الأسلحة أياً كان نوعها وأى شيء له علاقة بالامتحان.
- يجب على الممتحن الامتثال لإجراءات التفتيش داخل المركز طوال أيام الامتحان.

- يجب على الممتحن التأكد من استلام دفتر امتحانه، مغلفاً بغلاف
بلاستيكي شفاف وغير ممزق ، وهو مسؤول عنه حتى يسلمه لمراقبي
اللجنة بعد الانتهاء من الإجابة.
- يجب الالتزام بضوابط إدارة امتحانات دبلوم التعليم العام وما في
مستواه وأية مخالفة لهذه الضوابط تعرضك للتدابير والإجراءات
والعقوبات المنصوص عليها بالقرار الوزاري رقم ٥٨٨ / ٢٠١٥.
- يقوم المتقدم بالإجابة عن أسئلة الامتحان المقالية بقلم الحبر (الأزرق
أو الأسود). ٰ
 يقوم المتقدم بالإجابة عن أسئلة الاختيار من متعدد بتظليل
الشكّل (🔲) وفق النموذج الآتي:
س – عاصمــة سلطنة عمـــان هي:
🗖 القاهرة 🔲 الدوحة
🗖 مسقط 🔲 أبوظبي
ملاحظة: يتم تظليل الشكل (🛑) باستخدام القلم الرصاص وعند
الخطأ، امسح بعناية لإجراء التغيير.

Academic Year: 2019/2020

مُسَوِّدَة، لا يتم تصحيحها


Question 1: Multiple Choice Items

(14 marks)

There are 14 multiple-choice items worth one mark each.

Shade in the bubble () next to the **correct** answer for each of the following items.

1) Which of the following statements is correct about the two isomers of complex platin shown below?

- ☐ Isomer (1) is *cis*-platin, but isomer (2) is *trans*-platin
- Isomer (2) is neither *cis* nor *trans*-platin
- Both isomers have tetrahedral shape.
- Only isomer (2) is very effective in treating cancer.
- 2) A cation of Cu^{2+} forms a linear complex with OH⁻. Which of the following options shows the correct structure and electronic configuration of Cu^{2+} ion for this complex? (Atomic number of Cu=29)

Structure of the complex ion	Electronic configuration of Cu ²⁺
[НО Си ПОН]	[Ar]3d ¹⁰ 4s ¹
[HO►Cu·····OH] ¹⁻	[Ar]3d ¹⁰
[НО Си Си ОН]	[Ar]3d ⁹
[HO►Cu·····OH] ¹⁻	[Ar]3d ⁹ 4s ²

3) Which of the following options is correct for the complex ion in $[Cr(H_2O)_4Cl_2]Cl$?

Oxidation state of Cr	Oxidation state of Cr Expected shape	
+6	Tetrahedral	4
+3	Octahedral	4
+6	Tetrahedral	6
+3	Octahedral	6

First Session - First Semester

- 4) Which of the following statements is incorrect about benzene?
 - All of its bond angles are 120°.
 - Its atoms are arranged in a regular hexagon.
 - It undergoes nucleophilic addition reactions readily.
 - The bonds between carbon atoms have the same length.
- 5) For the reaction below:

Which of the following options is correct about reagent (X) and product (Y)?

Reagent (X)	Product (Y)
Na	HCI
Na	$\frac{1}{2}H_2$
NaOH	HCI
NaOH	$\frac{1}{2}H_2$

6) Which of the following would be a possible organic product from the Friedel-Crafts acylation of benzene with (C_6H_{11}) -CH₂COCl?

7) Which of the following statements about the reactions of acyl chlorides is incorrect?

- They undergo nucleophilic substitution reaction.
- They react with amines to produce amides.
- They react with alcohols to produce carboxylic acids.
- They react readily with phenols to produce esters.

8) Which of the following statements is correct about the compound below?

- ☐ It is a strong carboxylic acid.
- igcup It evolves $H_{2(g)}$ when reacts with carbonates.
- ☐ Its acidity strength is decreased by the alkyl group.
- ☐ It dissociates to a large extent when dissolved in aqueous solution.

A compound R has the following properties:

- It is an aryl compound.
- It is produced by reacting acyl chloride with primary amine.
- 9) Which structure could represent R?

- 10) Which of the following properties is incorrect about ethylamine?
 - It is a primary amine.
 - It is soluble in water.
 - ☐ It reacts with alkyl halides.
 - It is a weaker base than ammonia.
- 11) Which of the following compounds can form a zwitterion?

$$H_3C$$
 H_3C
 H_3C

12) For the reaction sequence below:

$$\begin{array}{c|c} & X & \\ \hline & NH_3 & \\ \hline & & \\ H_3C & \\ \hline \end{array}$$

Which of the following options represents substituents (X) and (Y)?

X	Υ
— CH ₂ NH ₂	— CONH ₂
— CONH ₂	— CH ₂ NH ₂
— CONH ₂	— СООН
— CH ₂ NH ₂	— СООН

- 13) Which of the statements below is incorrect about polymerisation of polypropene?
 - It involves Ziegler-Natta catalyst.
 - The double bonds are converted into single bonds.
 - All carbon atoms of the monomer become part of the chain.
 - ☐ It forms propene subunits forming head-to-tail arrangement.
- 14) Which of the following is correct about polymers (A, B)?

- ☐ Both of them are type II polymers.
- Both of them are formed by addition polymerisation.
- ☐ In both of them, the direction of the linkage is the same.
- O Polymer (A) has a peptide bond, whereas polymer (B) does not.

Question 2: Extended Questions

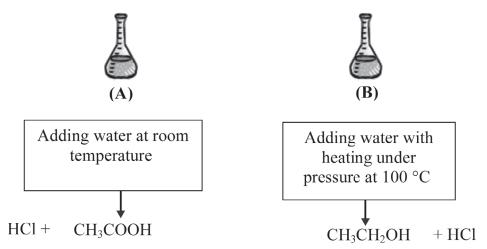
(42 marks)

15) A transition metal ion Co²⁺ can form a complex ion with six Cl⁻ ions. a. What is meant by transition metal? b. Which one, cobalt or calcium metal has higher density? Explain your answer. c. Which one, zinc or cobalt has higher melting point? d. Write the electronic configuration of cobalt ion Co²⁺ using [Ar] to represent the argon core. e. How many pairs of electrons are donated by the six ligands for the expected complex ion? f. What is the type of ligand in this complex ion (monodentate or bidentate)? Explain your answer.

g. Draw the complex ion formed by one Co²⁺ ion with six Cl⁻ ions. Your drawing should clearly show three-dimensional shape and should include the overall charge on the complex ion.

- **h.** If all ligands (Cl⁻ ions) of this complex ion are replaced with H₂NCH₂CH₂NH₂ ligand to form new complex ion with cobalt ion Co²⁺, how many ligands of H₂NCH₂CH₂NH₂ are needed to form the new complex ion. Explain your answer.
 - (i) Number of ligands: _____
 - (ii) Explanation:
- **16)** A series of three chemical reactions starting from benzene was carried out as follows. Study it and answer the following questions.

Reaction (I)
$$H_{2}O + (B) \xrightarrow{\text{Reaction (III)}} HNO_{3} \xrightarrow{\text{Conc. } H_{2}SO_{4}, \\ T < 55 \, ^{\circ}C} + HCI$$
Reaction (III)
$$CH_{3} \xrightarrow{\text{Cl}_{2}} (A) + HCI$$


a. Write the structural formula of the carbocation intermediate formed in the chlorination of benzene?

Academic Year: 2019/2020

Question 2 continued

- **b.** For reaction (I):
 - (i) What is the type of this reaction?
 - (ii) Write the structural formula of reagent X.
 - (iii) Name the organic product formed in reaction (I).
- c. For reaction (II):
 - (i) Write the structural formula of compound (A).
 - (ii) Write the structural formula of the predicted organic product if warm AICI₃ is used instead of UV light?
- d. For reaction (III):
 - (i) What is the type of this reaction?
 - (ii) Write the structural formula of compound (B).

- 17) Phenol decolourises a dilute solution of bromine in water at room temperature.
 - **a.** Write the equation for this reaction.
 - **b.** Explain why phenol is more reactive with bromine than benzene.
- **18)** A group of students carried out two reactions on two unknown compounds (**A** and **B**). One of them is acyl chloride and the other is chloroalkane. Their steps and results are shown in the diagram below. Study it to answer the questions below.

- a. For compounds (A) and (B):
 - (i) Write the structural formula for:

Compound (A)? _____

Compound (**B**)? _____

(ii) Which would you expect to have higher boiling point, compound (A) or compound (B)? Explain your answer.

Higher boiling point is: _____

Explanation:_____

b. For the organic products resulted from the two reactions:

(i) Which and is more acidis CH COOH or CH CH OH? Ever

(i) Which one is more acidic $\mathrm{CH_3COOH}$ or $\mathrm{CH_3CH_2OH?}$ Explain your answer.

- (ii) If those two products are mixed by adding strong acid with heating under reflux, write the structural formula of the produced organic product?
- **c.** If two groups of —Cl are added on the opposite side of the —COOH group of ${\rm CH_3COOH}$ to be ${\rm Cl_2CHCOOH}$. What will be the effect on the acidity of ${\rm CH_3COOH}$?

19) Use curly arrows to draw the mechanism for the reaction of CH₂CH₂CH₂-COCl with

water.

20) Phenylamine is an important organic compound for the production of dyes and other industrial chemicals.

$$\sim$$
NH₂

a. Phenylamine can be synthesised from benzene in two steps

$$\underbrace{\frac{\text{Conc.HNO}_3 + \text{Conc.H}_2\text{SO}_4}{\text{T} < 55^{\circ}\text{C}}} \underbrace{\qquad \qquad } \underbrace{\text{II}} \underbrace{\qquad \qquad } \text{NH}_2$$

- (i) Write the structural formula of compound (X) shown in the scheme above.
- (ii) Suggest suitable reagents and conditions for step II.
- **b.** Phenylamine is a base.
 - (i) Write an equation for the reaction of phenylamine with HCl.
 - (ii) Which is less basic phenylamine or ethylamine? Explain your answer.

21) A dye can be made as shown below.

$$H_3C$$
 \longrightarrow NH_2 \longrightarrow H_3C \longrightarrow N^* \longrightarrow NC^* \longrightarrow N^* \longrightarrow

$$H_3C$$
 \longrightarrow N^+ $=$ $N CI^ +$ alkaline \longrightarrow y dye y

- a. For step (I):
 - (i) State the required reagents and conditions.
 - (ii) What do we call this type of salt produced in step (I)?
- **b.** For step (II):
 - (i) What is the name of the reaction?
 - (ii) Write the structural formula of the dye formed in the above scheme.
- **c.** Write the structural formula of the organic compound formed when compound (A) is added to ${\rm CH_3CH_2COCl.}$

22) Study the following polymers and answer the questions below.

- a. Identify the type of polymerisation (addition or condensation) for each polymer?
 - (i) Polymer A: _____
 - (ii) Polymer B: _____
 - (iii) Polymer C:
 - (iv) Polymer D: _____
- **b.** What makes polymer (A) one of the strongest polymers?

Academic Year: 2019/2020

Question 2 continued

- **d.** Which polymer represents Nylon 6.6?
- e. Which polymer is a non-sticking polymer?
- 23) Study the following reaction and answer the question below.

- a. What is meant by polymerisation?
- **b.** Write the structural formula of monomer X.

c. What is the name of the functional group formed in the produced polymer?

[End of Examination]

PERIODIC TABLE OF THE ELEMENTS

Hellum 10 Necon 18 Ar Argan	36 Kr 83.798 Krypton	54 Xenon	Rn 222 Radon	Ununoctium
9 F 18.998403163 Fluorine T7 C C 35.45 Chlorine	35 Br 79.904 Bromine	53	At 210 Astatine	Ununseptium
15.999 Oxygen 16 Suffur	34 Se 78.971 Selenium	52 Tellurium	P0 209 Polonium	Livermorium
7 Ntrogen 14.007 Ntrogen 15 P 30.973761998 Phosphorus	33 Asenic	51 Sb 121.760 Antimony	83 Bi 208.98040 Bismuth	Uup
6 C 12.01.1 Carbon 14 SI Silicon Silicon	32 Ge 72.630 Germanium	50 Sn 118.710 Tin	82 Pb 207.2 Lead	114 Fl
5 B 10.81 Boron 13 A 26.9815385 Aluminium	31 Ga 69.723 Gallium	49 n	204.38 Thallium	Uut 286 Ununtrium
	30 Zn 65.38 Zinc	48 Cd 112.414 Cadmium	80 Hg 200.592 Mercury	Cn 285 Copernicium
	29 Cu 63.546 Copper	Ag 107.8682 Silver	Au 196.966569	Rg 281 Roentgenium
- Atomic Mass - Name	28 S8.6934 Nickel	Pd 106.42 Palladium	78 Pt 195.084 Platinum	DS 281 Darmstadtium
	27 CO 58.933194 Cobalt	45 Rhodium	77	109 Mt
→ 1.008 ← Hydrogen ←	26 Fe 55.845 Iron	Ruthenium	76 OS 190.23 Osmium	108 Hassium
-	25 Mn 54.938044 Manganese	TC 98 Technetium	Re 186.207	107 Bh
Atomic Number → Symbol —	24 Cr 51.9961 Chromium	MO 95.95 Molybdenum	74 W 183.84 Tungsten	Sg 269 Seaborgium
Atomi	23 V 50.9415 Vanadium	41 Nb 92.90637 Niobium	73 Ta 180.94788 Tantalum	105 Db 268 Dubnium
	22 T 47.867 Titanium	40 Zr 91.224 Zirconium	Hafnium	PR 267 Rutherfordium
	21 SC 44.955908 Scandium	39 Kas.90584 Yttrium	57/	89/103
4 Be 90121831 Beryllum 12 Mg 24.305 Magnesium	20 Ca 40.078 Calcium	38 Sr 87.62 Strontium	56 Ba 137.327 Bartum	88 Rad Radium
1 H 1 1008 1,008 1	19 K 39.0983 Potassium	Rb 85.4678 Rubidium	55 CS 132.90545196 Caesium	87 Fr 223 Francium

⁷¹ Lu	174.9668 Lutetium	103 Lr 266 Lawrencium
۲p	173.054 Ytterbium	Nobelium
°° Tm	168.93422 Thulium	Md 258 Mendelevium
Er Er	167.259 Erbium	Fm 257 Fermium
67 H0	164.93033 Holmium	ES 252 Einsteinium
ů Dy	162.500 Dysprosium	98 Cf 251 Californium
dT Tb	158.92535 Terbium	97 BK 247 Berkelium
² Gd	157.25 Gadolinium	96 Cm 247 Curium
Eu	151.964 Europium	Am 243 Americium
Sm	150.36 Samarium	Pu 244 Plutonium
Pm	145 Promethium	Np 237 Neptunium
» Q	144.242 Neodymium	92 U 238.02891 Uranium
Pr	140.90766 Praseodymium	Pa 231.03588 Protactinium
Ce Si	140.116 Cerium	90 Th 232.0377 Thorium
La La	138.90547 Lanthanum	AC 227 Actinium
Lanthanide Series		Actinide Series

General Education Diploma, Semester One First Session Bilingual Private Schools, Chemistry, 2019/2020

TOTAL MARKS: 70

Question One (14 Marks)

There are 14 multiple-choice items. Each correct answer worth ONE mark.

Item No.	Correct option
1	d. Only Isomer (2) is very effective in treating cancer
2	c. [HO Cu Cu OH] [Ar]3d ⁹
3	d. +3 Octahedral 6
4	c. It undergoes nucleophilic addition reactions readily.
5	b. Na $\frac{1}{2}$ H ₂
6	c.
7	c. They react with alcohols to produce carboxylic acids.
8	c. Its acidity strength is decreased by the alkyl group.
9	a. NHCH ₂ CH ₂ CH ₂ CH ₃
10	d. It is a weaker base than ammonia.
11	H_3C_{11} COOH H_2N
12	b. $-CONH_2$ $-CH_2NH_2$
13	c. All carbon atoms of the monomer become part of the chain.
14	a. Both of them are type II polymers.

General Education Diploma, Semester One, First Session Bilingual Private Schools, Chemistry, 2019/2020

QUESTION TWO: Extended response (56 marks)

		The groups	Marks
<u>Part</u>	Section	The answer	1
15	a.	In terms of d-block elements, forming one or more stable ions	1
		with incomplete d orbitals. Or transition metal is those metals in	
		the block that show properties characteristically different from	
		those in the s and d blocks. Or those elements that have	
		electronic configuration from [Ar]3d ¹ 4s ² to [Ar]3d ¹⁰ 4s ² inclusive.	
		Any answer from above mark is given.	2
	b.	Cobalt / Co (1mark)	2
		Because the metallic radii tend to decrease across the period as	
		the increasing nuclear charge attracts the outer electrons more	
		strongly. This decrease in metallic radii means that the density of	
		the transition metal (Co) is higher than that of calcium.	
		(1mark)	
	c.	Cobalt / (Co)	1
	d.	[Ar]3d ⁷	1
	e.	6 pairs of electrons or 12 electrons	1
	f.	Monodentate (1 mark)	2
		Because each ligand (Cl ⁻) joins by one bond to the metal ion	
		(Co ²⁺) Or because each ligand (Cl ⁻) is attached by one coordinate	
		bond to the metal ion (Co ²⁺) or because each ligand (Cl ⁻) contains	
		one groups of a lone pair of electrons. (1 mark)	
		Any answer from above mark is given.	
	g.	4-	2
	-	-1 mark for drawing the three-dimensional shape (the octahedral	
		shape) of the complex ion.	
		-1 mark for writing the correct overall charge on the complex ion	
		(-4).	
	h.	Three or 3 (1 mark)	2
		Because the ligand (H ₂ NCH ₂ CH ₂ NH ₂) is bidentate	
		Or each ligand (H ₂ NCH ₂ CH ₂ NH ₂) joins by two bond to the metal	
		ion (Co ²⁺) Or because each ligand (H ₂ NCH ₂ CH ₂ NH ₂) is attached	
		by two coordinate bond to the metal ion (Co ²⁺) Or because each	
		ligand (H ₂ NCH ₂ CH ₂ NH ₂) contains two lone pairs of electrons	
		(1 mark)	
		Any answer from above mark is given.	

General Education Diploma, Semester One, First Session Bilingual Private Schools, Chemistry, 2019/2020

	a	وَلَكُنَّ لِلْفِشَاءِ لَيْتُ وَلِيْتُو لِلْفِرِيِّنَانِكَ الْمِنْ اللَّهِ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللّ	Marks
Part 1.	Section	The answer	1
16	a	H C1	1
		H CI	
		X \	
		$\left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \end{array}\right) \end{array}\right) \end{array}\right)$	
		+) or +	
		If the student draws any correct mesomere mark is given.	
	b.i	Friedel-Crafts Alkylation	1
	b.ii	CH ₃ CH ₂ Cl	1
	b.iii	Ethylbenzene	1
	c.i	CHClCH ₃ CH ₂ CH ₂ Cl	1
		Or U	
	c.ii	^ ^	1
		CH ₃	
		Vol. 1 1 1 1 1 2 2 2 5 and monition monition monition	
	3 2	If the student draws Cl on 2, 3, 5 or 6 position mark is given. Nitration	1
	d.i		1
	d.ii	CH ₃	1
		NO ₂	
		If the student draws NO ₂ on 2, 3, 5 or 6 position mark is given.	
17	a	OH OH	1
1 /	a	Br Br	_
		$+ 3Br_{2(aq)} \rightarrow + 3HBr$	
		Br	
		To get the mark all components of the reaction should be	
	b	Because of the delocalization of the lone pair of electrons	1
	ט	on oxygen over the arene ring.	_
		on oxygen over the arene ring.	

General Education Diploma, Semester One, First Session Bilingual Private Schools, Chemistry, 2019/2020

<u>Part</u>	Section	The answer وروان الاستان المستان المس	<u>Marks</u>
18	a.i	Compound (A): CH ₃ COCl (1 mark) Compound (B): CH ₃ CH ₂ Cl (1 mark)	2
	a.ii	Higher boiling point is: Compound (A) or CH ₃ COCl (1 mark) Explanation: because of the extra electron-withdrawing effect of the carbonyl group of acyl chloride, resulting in extra dipoledipole attractions compared with the halogenoalkane. (1 mark) If the student selected compound (B) to be acyl chloride and his explanation is correct mark is given.	2
,	b.i	More acidic: is CH ₃ COOH. (1 mark) Explanation: because the negative charge on the carboxylate anions of carboxylic acid can be delocalized over two electronegative oxygen atoms. Or because of the increasing ability of the molecular structures to delocalize the negative charge in the carboxylate anions of carboxylic acid rather than in the alkoxide of alcohol. (1 mark)	2
	b.ii	CH ₃ COOCH ₂ CH ₃	1
	c.	increase	1
19		CH ₃ CH ₂ CH ₂ -C Cl H—Ö: H H	3
		$CH_{3}CH_{2}CH_{2}-C$ $CH_{3}CH_{2}CH_{2}-C$ $H \longrightarrow CH_{3}CH_{2}CH_{2}-C$ $H \longrightarrow CH_{3}CH_{2}CH_{2}-C$ $CH_{3}CH_{2}CH_{2}-C$ $CH_{3}CH_{2}CH_{2}-C$ $+ HCI$	
		CH ₃ CH ₂ CH ₂ -C H CH ₃ CH ₂ CH ₂ -C H CH ₃ CH ₂ CH ₂ -C H CH ₃ CH ₂ CH ₂ -C OH -Each step worth 1 mark. -To get the mark all components of the equation should be correct. -To get the mark all the arrows should be drawn.	

General Education Diploma, Semester One, First Session Bilingual Private Schools, Chemistry, 2019/2020

		Bilingual Private Schools, Chemistry, 2019/2020	(6)
Part	Section	The answer	Marks
20	a.i	NO ₂	1
	a.ii	Sn + Conc. HCl, heat 1 mark 1 mark To get the mark all components should be included.	2
	b.i	NH ₂ + HCl NH ₃ + Cl To get the mark all components of the equation should be correct.	1
	b.ii	Phenylamine. 1 mark	
		Because in ethylamine, the electron-donating alkyl group	
		attached to the nitrogen atom increase the basicity that the lone pair of electrons on nitrogen will be more available to	2
		form a dative bond with a proton.	
		Or, in the phenylamine the lone pair of electrons on	*
		nitrogen atom is delocalised over the benzene ring. 1 mark	
21	a.i	HNO ₂ ,NaNO ₂ , HCl, at T < 5 °C Each component is worth 0.5 mark	2
	a.ii	Diazonium	1
	b.i	a coupling reaction.	1
	b.ii	H_3C —OH	1
	c.	H ₃ C—NH	1
		H ₃ C—	

General Education Diploma, Semester One, First Session Bilingual Private Schools, Chemistry, 2019/2020

		100000000	11
<u>Part</u>	Section	The answer	/ Marks
22	a	A: condensation, B,C &D: addition	4
		Each polymer worth 1 mark	
	ъ	Because of the strong hydrogen bonds between the	1
		chains	
	С	CH ₂ =C(CN)CO ₂ CH ₃	1
	d	A	1
	e	С	1
23	a	a process of reacting monomers molecules together in a	1
		chemical reaction to form polymer chains	
	.b	0 0	1
		CI - C - C	
			1
	C	Amide or peptide	1

(6)

This is the end of the Marking Guide