

امتحان دبلوم التعليم العام للمدارس الخاصة (ثنائية اللغة) للعام الدراسي ١٤٣٩/١٤٣٨ هـ - ٢٠١٧ / ٢٠١٨ م الدور الثاني - الفصل الدراسي الثاني

الكيمياء	المادة:	•	تنىيە:
** **			** *

• زمن الإجابة: ثلاث ساعات.

• الأسئلة في (١٤) صفحة.

• الإجابة في الورقة نفسها.

تعليمات مهمة:

- يجب الحضور إلى قاعة الامتحان قبل عشر دقائق على الأقل من بدء زمن الامتحان.
 - يجب إحضار أصل ما يثبت الهوية وإبرازها للعاملين بالامتحانات.
- يجب الالتزام بالزي (الدشداشة البيضاء والمصر أو الكمة للذكور)
 والزي المدرسي للطالبات ، ويستثنى من ذلك الدارسون من غير
 العمانيين بشرط الالتزام بالذوق العام ، ويمنع على جميع المتقدمات
 ارتداء النقاب داخل المركز وقاعات الامتحان.
- يحظر على الممتحنين اصطحاب الهواتف النقالة وأجهزة النداء الآلي وآلات التصوير والحواسيب الشخصية والساعات الرقمية الذكية والآلات الحاسبة ذات الصفة التخزينية والمجلات والصحف والكتب الدراسية والدفاتر والمذكرات والحقائب اليدوية والآلات الحادة أو الأسلحة أياً كان نوعها وأي شيء له علاقة بالامتحان.
- يجب على الممتحن الامتثال لإجراءات التفتيش داخل المركز طوال أيام الامتحان.

- يجب على الممتحن التأكد من استلام دفتر امتحانه، مغلفاً بغلاف
بلاستيكي شفاف وغير ممزق ، وهو مسؤول عنه حتى يسلمه لمراقبي
اللجنة بعد الانتهاء من الإجابة.
- يجب الالتزام بضوابط إدارة امتحانات دبلوم التعليم العام وما في
مستواه وأية مخالفة لهذه الضوابط تعرضك للتدابير والإجراءات
والعقوبات المنصوص عليها بالقرار الوزاري رقم ٥٨٨ / ٢٠١٥.
- يقوم المتقدم بالإجابة عن أسئلة الامتحان المقالية بقلم الحبر (الأزرق
أو الأسود).
- يقوم المتقدم بالإجابة عن أسئلة الاختيار من متعدد بتظليل
الشكُّل () وفق النموذج الآتي:
س – عاصمــة سلطنة عمـــان هي:
🗖 القاهرة 📄 الدوحة 🗍
🗖 مسقط 🔻 أبوظبي
ملاحظة: يتم تظليل الشكل (🛑) باستخدام القلم الرصاص وعند
الخطأ، امسح بعناية لإجراء التغيير.

Academic Year: 2017/2018

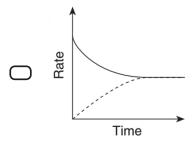
مُسَوِّدَة، لا يتم تصحيحها

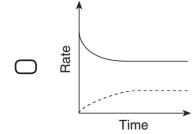
Question 1: Multiple Choice Items

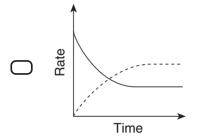
(28 marks)

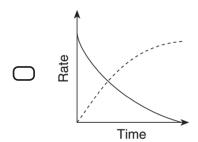
There are 14 multiple-choice items worth two marks each.

Shade in the bubble () next to the **correct** answer for each of the following items.


1) Which of the following options is correct about the uses of nitric acid and sulphuric acid?


HNO ₃	H ₂ SO ₄	Both HNO_3 and H_2SO_4
explosive	plastics	fertilisers
detergents	explosive	fertilisers
plastics	fertilisers	detergents
fertilisers	explosive	detergents


2) Which of the following graphs shows how the rates of forward and backward reactions change when hydrogen and iodine are mixed until an equilibrium is reached?


——— = Forward reaction

3) Consider the following equilibrium system:

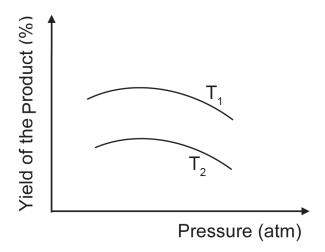
$$N_2O_{4(g)} \iff 2NO_{2(g)}$$
 pale yellow dark brown

Which of the following combinations describes the effect of increasing the pressure of the system?

Colour of the mixture	Value of Kc
dark brown	increases
pale yellow	remains constant
dark brown	remains constant
pale yellow	increases

4) Consider the equilibrium system below:

$$2CrO_{4~(aq)}^{2-} + 2H_{(aq)}^{+} \iff Cr_2O_{7~(aq)}^{2-} + H_2O_{(I)}, \quad \Delta H > 0$$


Which of the following changes will increase the concentration of $Cr_2O_7^{2-}$?

- I. Adding 2.0M HNO₃.
- II. Increasing the pressure.
- III. Adding Ba(NO₃)_{2(aq)}, (BaCrO_{4(s)} is formed).
- IV. Increasing the temperature.

I and III			II and II

- **5)** Generally, which of the following indicates that an equilibrium system favours reactants?
 - \bigcirc 80% yield \bigcirc Positive $\triangle H$
 - igcup High reaction rate. igcup Small $K_{\rm eq}$

6) The graph below shows the effect of temperature and pressure on the yield of the products in a gaseous endothermic equilibrium system.

Which of the following options is correct about this equilibrium system?

Temperature	Number of gas molecules	Equilibrium constant
$T_2 > T_1$	more gas molecules of reactants	$K_p 2 < K_p 1$
$T_2 > T_1$	less gas molecules of reactants	$K_p 2 > K_p 1$
$T_2 < T_1$	more gas molecules of reactants	$K_p 2 > K_p 1$
$T_2 < T_1$	less gas molecules of reactants	$K_p 2 < K_p 1$

7) Consider the following equilibrium reaction:

$$2NO_{(g)} \iff N_{2(g)} + O_{2(g)}$$
, $K_{eq} = 2.1 \times 10^{30}$

Which of the following options is correct at equilibrium?

8) What is the conjugate base of HCO₃⁻?

O H₂CO₃

 \bigcirc CO_2^{2}

 \bigcirc H⁺

 \bigcirc OH

Academic Year: 2017/2018

Question 1 continued

9) Which of the following combinations would make a buffer solution?

☐ HCI/CH₃COOCI

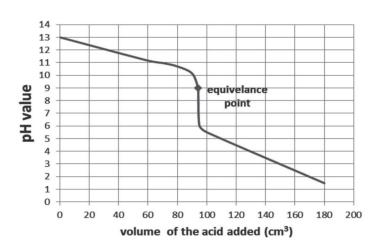
☐ HF/NaF

O NH₃/NH₄OH

CH₃COOH/NH₄CI

10) If $[H^+]$ at the equivalence point is calculated to be 1.0×10^{-4} mol.dm⁻³ for a particular titration, which of the following acid–base indicators is more suitable for this titration?

Indicator	pK _{Ind}	pH range
Methyl orange	4.2	3.2 – 4.4
Bromocresol green	4.7	3.8 – 5.4
Bromothymol blue	7.1	6.0 – 7.6
Phenol red	7.4	6.6 – 8.0


Methyl orange

☐ Bromocresol green

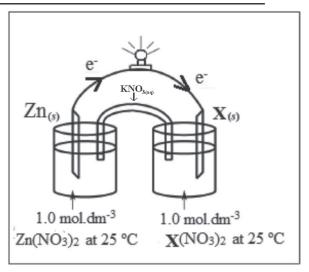
Bromothymol blue

Phenol red

The following graph shows the pH curve for the titration of 0.1 $moldm^{-3}$ of unknown acid (HX) against $40cm^3$ of unknown base (YOH) (0.1 $moldm^{-3}$).

11) What is the type of this titration in terms of acid-base strength?

Strong acid against strong base


Strong acid against weak base

Weak acid against strong base

Weak acid against weak base

- **12)** Which of the following statements is **incorrect** about the changes that occur in the electrochemical cells?
 - The reduced electrode earns electrons.
 - The current flows in the circuit until two of the reactants are used up.
 - Oxidation occurs at the electrode with the lower standard electrode potential.
 - The e.m.f of a cell varies depending on the temperature, pressure and concentration of solution.

Study the diagram below to answer questions 13 and 14.

- 13) Which of the following options is correct for this cell?
 - X gets reduced.
 - Zn electrode accepts electrons.
 - \bigcirc Zn²⁺ is weaker oxidizing agent than X²⁺.
 - X has a greater tendency to lose electrons.
- 14) Which cell diagram represents the reaction occurs in this cell:
 - \bigcap $Zn^{2+}(aq) | Zn(s) | X(s) | X^{2+}(aq)$
 - \square Zn(s) | Zn²⁺(aq) | X²⁺(aq) | X(s)

Question 2: Extended Questions

(42 marks)

Write your answer for each of the following questions in the space provided. Be sure to show all your work, including the correct units where applicable.

15) In the contact process, sulphur dioxide is catalytically oxidized to sulphur trioxide according to the following equation:

$$2SO_{2(g)} + O_{2(g)} \iff 2SO_{3(g)} \qquad \Delta H = -197 \text{ kJ mol}^{-1}$$

The table below shows the theoretical conditions and the industrial conditions used for the preparation of sulphur trioxide. Study it to answer the following questions:

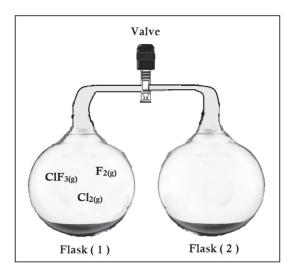
Conditions	Temperature (°C)	Pressure (kPa)
Theoretical	200	300
Industrial	450	105

- a. What is the catalyst used in this process?
- **b.** Explain why the lower temperature results in a higher yield of sulphur trioxide in the equilibrium mixtures.

c. Explain why in industry a pressure of 105 kPa is used to produce sulphur trioxide rather than a higher pressure?

16) Study the equilibrium reactions shown in the table below and their corresponding equilibrium constants and different ΔH° to answer the following questions:

	Reactions	ΔH° (kJ mol ⁻¹)	Kc
(1)	$H_2O_{(g)} + C_{(s)} \rightleftharpoons H_{2(g)} + CO_{(g)}$	+131	3.0×10^{-2}
(2)	$CO_{(g)} + 2H_{2(g)} \iff CH_3OH_{(g)}$	-91	14.5
(3)	$CH_{4(g)} + H_2O_{(g)} \iff CO_{(g)} + 3H_{2(g)}$	+206	1.78×10^{-3}
(4)	$4HCl_{(g)} + O_{2(g)} \iff 2H_2O_{(g)} + 2Cl_{2(g)}$	-116	20.0×10^{2}


- a. In which of the above reactions the position of equilibrium will shift to the right by adding $H_2O_{(q)}$?
- **b.** What is the effect on the yield of reaction (3) when a catalyst is used?
- **c.** In which of the reactions the position of equilibrium will shift to the left upon an increase in pressure, but to the right upon an increase in temperature?
- **d.** In which of the above reactions the products predominate in the equilibrium mixture?
- e. What is the units of the equilibrium constant Kc for reaction (2)?
- f. Calculate the value of Kc for the following reaction.

$$\mathsf{H}_{2(\mathsf{g})} + \mathsf{CO}_{(\mathsf{g})} \;\; \Longleftrightarrow \;\; \mathsf{H}_2\mathsf{O}_{(\mathsf{g})} + \mathsf{C}_{(\mathsf{s})}$$

17) Chlorine trifluoride is a gas decomposes into its elements as indicated in the reaction below:

$$2CIF_{3(g)} \iff 3F_{2(g)} + CI_{2(g)}$$
 colourless pale yellow yellow-greenish

The diagram below shows two flasks connected via a closed valve. Flask (1) contains a pale yellow mixture of $ClF_{3(g)}$, $F_{2(g)}$ and $Cl_{2(g)}$ at equilibrium at room temperature. Study it to answer the following questions:

a. When the equilibrium mixture in flask (1) is cooled, its colour fades. Is the backward reaction endothermic or exothermic? Explain your answer.

b. What is the effect on the position of the equilibrium if the valve is opened at a constant temperature? Explain your answer.

18) Hydrogen gas can be made from carbon monoxide and steam as shown in the following equation.

$$CO_{(g)} + H_2O_{(g)} \iff CO_{2(g)} + H_{2(g)} \qquad \Delta H = -41 \text{ kJ mol}^{-1}$$

The concentrations of two equilibrium mixtures at different temperatures are listed in the table below. Study them to answer the following questions:

	CO _(g)	H ₂ O _(g)	CO _{2(g)}	H _{2(g)}
Equilibrium (1)	0.100	0.025	0.075	0.061
Equilibrium (2)	0.116	0.041	0.059	0.045

- a. Write the equilibrium constant Kc expression for this reaction?
- **b.** Calculate the value of the Kc in equilibrium (1)?
- **c.** What is the effect on the value of equilibrium constant for the forward reaction when the temperature is increased? Explain your answer.

d. Which equilibrium (1 or 2) is at a higher temperature? Explain your answer.

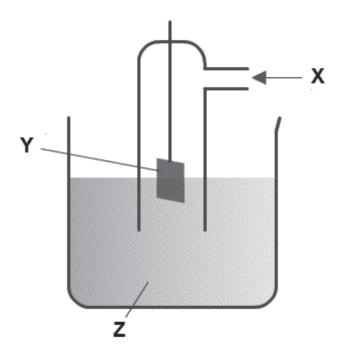
- **19)** If the species $HB_{(aq)}^-$ is known to be a proton donor.
 - a. Write the dissociation equation for this species.
 - **b.** Write the equilibrium constant expression for the dissociation equation of this species.

20) The table below shows three acidic solutions and their Ka values.

Solutions	НА	НВ	НС
Ka	8.4×10^{-4}	7.2×10^{-4}	1.4×10^{-3}

- a. What is the relationship between the Ka of an acid and its strength?
- **b.** Which solution has the lowest concentration of H⁺?
- c. Calculate the concentration of the acid (HB) if its pH is 2.0

21) A 1.0 L buffer solution was prepared by adding 0.25 mol of acetic acid (Ka = 1.7×10^{-5}) and 0.25 mol of sodium acetate.


a. Calculate the pH of this buffer solution.

b. Which of the following two reactions will take place if a small amount of nitric acid is added to the buffer solution?. Explain your answer.

Reaction 1: $CH_3COO^-_{(aq)} + H^+_{(aq)} \iff CH_3COOH_{(aq)}$

Reaction 2: $CH_3COOH_{(aq)} \iff CH_3COO^-_{(aq)} + H^+_{(aq)}$

22) The diagram below shows the standard hydrogen half-cell. Study it to answer the following questions.

- a. What is the standard hydrogen half-cell used for?
- **b.** Name the components represented by (X), (Y) and (Z)

v.

Z:

c. Write the half-cell diagram as a short-hand way to represent the half-cell reduction reaction that takes place at the standard hydrogen half-cell.

23) The table below shows six half cells with their standard electrode potentials (E^0/V). Study it to answer the following questions.

Half cell	E ⁰ / V
Ni ²⁺ Ni(s)	-0.26
$Pt \mid Cl_{2(g)} , 2Cl^{\scriptscriptstyle{-}}_{ (aq)}$	+ 1.36
$\operatorname{Zn}^{2+}_{(\operatorname{aq})} \operatorname{Zn}_{(\operatorname{s})}$	-0.76
Mg ²⁺ (aq) Mg _(s)	-2.37
Fe ²⁺ Fe _(s)	-0.44
Al ³⁺ (aq) Al _(s)	-1.66

a. For an electrochemical cell setup between (Ni) and (Fe) half cells.

(i)	Draw a	labeled	diagram	for	this	cell.
-----	--------	---------	---------	-----	------	-------

Do not write in this space

(ii) What is the direction of electron flow through the wire in this cell?

	(iii)	Write the half-cell oxidation and reduction reactions that occur in this cell.
		The half-cell oxidation reaction:
		The half-cell reduction reaction:
b.		culate the standard electromotive force (E ⁰ cell) for the cell setup between g) and (AI).
c.	Car	n we save a solution of NiCl ₂ in a beaker made from Zinc? Explain your answer.

[End of the Examination]

Academic Year: 2017/2018

MARKING GUIDE

GENERAL EDUCATION DIPLOMA BILINGUAL PRIVATE SCHOOLS SEMESTER TWO - SECOND SESSION

CHEMISTRY 2017 / 2018

General Education Diploma, Semester Two, Second Session Bilingual Private Schools, Chemistry, 2017/2018

Exam Specifications:

	Total	18	13	22	17	70
8	Reasoning (20%)	4	2	4	4	14
Cognitive levels	gniylqqA (%02)	6	7	11	8	35
	gniwonA (%0£)	5	4	7	5	21
esponse (Marks	10	7	14	11	42
Extended response (60%)	Number of questions			ю		3
choice)	Marks	8	9	8	9	28
Multiple choice (40%)	Number of questions	4	3	4	3	14
	Weighting	26 %	19 %	31 %	15 %	100 %
	Topics of the units	Equilibrium mixture	Equilibrium constant	Acid/base equilibria	Electrode potential	Total

Distribution of cognitive domains and marks.

Seria l No	Questio n number	Item	Mark	Unit	Page	Cognitive domain	Outpu t
1	1	1	2	Equilibrium mixture	365	Knowing	6
2	1	2	2	Equilibrium mixture	357	Applying	1, 2
3	1	3	2	Equilibrium mixture	359	Applying	3
4	1	4	2	Equilibrium mixture	358-361	Reasoning	3
5	1	5	2	Equilibrium constant	370	Knowing	3
6	1	6	2	Equilibrium constant	374-375	Reasoning	5
7	1	7	2	Equilibrium constant	368, 370	Applying	1, 3
8	1	8	2	Acid/base equilibria	382	Applying	3
9	1	9	2	Acid/base equilibria	392	Knowing	9
10	1	10	2	Acid/base equilibria	391	Reasoning	8
11	1	11	2	Acid/base equilibria	391	Applying	7
12	1	12	2	Electrode potential	408	Knowing	1
13	1	13	2	Electrode potential	411	Applying	5i
14	1	14	2	Electrode potential	409	Applying	3
15	2	15.a	1	Equilibrium mixture	361	Knowing	4
16	2	15.b	1	Equilibrium mixture	361	Knowing	4
17	2	15.c	1	Equilibrium mixture	361	Knowing	4
18	2	16.a	1	Equilibrium mixture	358	Applying	3
19	2	16.b	1	Equilibrium mixture	358	Knowing	3
20	2	16.c	1	Equilibrium mixture	359-360	Applying	3
21	2	16.d	1	Equilibrium constant	370	Knowing	3
22	2	16.e	1	Equilibrium constant	369	Applying	2
23	2	16.f	1	Equilibrium constant	368	Knowing	2
24	2	17.a	2	Equilibrium mixture	360	Applying/ Reasoning	3
25	2	17.b	2	Equilibrium mixture	359	Applying/ Reasoning	3
26	2	18.a	1	Equilibrium constant	368	Applying	1
27	2	18.b	1	Equilibrium constant	369	Applying	4
28	2	18.c	2	Equilibrium constant	375	Reasoning	5
29	2	18.d	2	Equilibrium constant	375	Reasoning	5
30	2	19.a	1	Acid/base equilibria	385	Applying	6

					1123	The state of the s	0 2722 11
31	2	19.b	1	Acid/base equilibria	385	Applying	6
32	2	20.a	1	Acid/base equilibria	385	Knowing	6
33	2	20.b	1	Acid/base equilibria	385	Knowing	5
34	2	20.c	3	Acid/base equilibria	386	Applying	5,6
35	2	21.a	3	Acid/base equilibria	393	Applying	5,6
36	2	21.b	2	Acid/base equilibria	392	Knowing	9
37	2	22.a	1	Electrode potential	410	Knowing	4
38	2	22.b	1½	Electrode potential	410	Knowing	4
39	2	22.c	1/2	Electrode potential	410	Knowing	4, 3
40	2	23.a.i	2	Electrode potential	408	Applying	2
41	2	23.a.ii	1	Electrode potential	408	Applying	2
42	2	23.a.iii	1	Electrode potential	409	Applying	1
43	2	23.b	1	Electrode potential	412	Applying	5ii
44	2	23.c	2	Electrode potential	411	Reasoning	6

TOTAL MARKS: 70

PAGES: (5)

Question One

(28 Marks)

There are 14 multiple-choice items. Each correct answer is worth TWO marks.

Item		Correct option
1	a)	explosive plastics fertilisers
2	a)	- Bate
		Time
3	b)	pale yellow remains constant
4	c)	I and IV
5	d)	Small K _{eq}
6	d)	T2< T1 less gas molecules of reactants K2< K1
7	a)	$[NO]^2 < [N_2][O_2]$
8	b)	CO_3^{2-}
9	b)	HF/NaF
10	a)	methyl orange
11	c)	Weak acid against strong base
12	b)	The current flows in the circuit until two of the reactants are used up.
13	c)	Zn ²⁺ is weaker oxidizing agent than X ²⁺ .
14	b)	$Zn(s) \mid Zn^{2+}(aq) \stackrel{\text{\tiny II}}{=} X^{2+}(aq) \mid X(s)$

Question Two

15	b The the fav	nadium(v) oxide catalyst. Or V ₂ O ₅ e forward reaction is exothermic, giving out heat. So if temperature is decreased the forward reaction is roured, as this will raise the temperature. Therefore, at temperature, the equilibrium mixture will have more	The mark 1
	b The the fav	e forward reaction is exothermic, giving out heat. So if temperature is decreased the forward reaction is coured, as this will raise the temperature. Therefore, at	
	the fav lov SO	temperature is decreased the forward reaction is roured, as this will raise the temperature. Therefore, at	1
	is	lower pressure, the cost of building and running the plant lower <u>or</u> with high yield reaches 97% it is not worth it ending too much money to compress gases.	1
16		actions (1) and (3). Each answer worth (½ mark).	1
	b A	catalyst does not affect the yield of the equilibrium.	1
	I .	actions (1) and (3). Each answer worth (½ mark).	1
		actions (2) and (4). Each answer worth (½ mark).	1
	e Un	its of Kc: mol ⁻² dm ⁶	1
		om reactions (1): $\frac{1}{c} = \frac{1}{K_c} = \frac{1}{3.0 \times 10^{-2}} = 33.33 \text{ mol}^{-1} \text{ dm}^3$	1
17	When corrections the correction of the correctio	e backward reaction is exothermic. (1 mark) nen the system is cooled, its colour fades because the ncentration of CIF _{3(g)} increases. can be deduced that when the temperature is decreased, system will undergo a net backward reaction of see the temperature. us, the backward reaction should be an exothermic ction. (1 mark)	2
1	If inc	e position of equilibrium shifts to the right (products). (1 mark) the valve is opened this will decreases the pressure by reasing the volume, the position of equilibrium shifts to to increase the pressure. It moves to the right, to the side the the highest molecules of gas. (1 mark)	2

18	a	$K_{c} = \frac{[CO_{2(g)}][H_{2(g)}]}{[CO_{(g)}][H_{2}O_{(g)}]}$	1
		$[CO_{(g)}][H_2O_{(g)}]$	
	b	$K_c = \frac{0.075 \times 0.061}{0.100 \times 0.025} = 1.83$	1
	c	K _c decreases. (1 mark)	2
		The forward reaction is exothermic as the temperature increases the position of the equilibrium will shift to the left, thereby reducing the temperature. The new equilibrium mixture will contain more of the reactants, and less products, than the original mixture. (1 mark)	
	d	Equilibrium (2) is at a higher temperature. (1 mark) The forward reaction is exothermic which favours decreasing the temperature. The equilibrium (2) contain more of the reactants, and less products, contrasted to the equilibrium (1). (1 mark)	2
19	a	$HB^{-}_{(aq)} = B^{2-}_{(aq)} + H^{+}_{(aq)}$	1
	b	$K_a = [B^{2-}][H^+]/HB^-]$	1
20	a	The higher the Ka the stronger the acid or they are directly proportional to each other.	1
	b	HB	1
	c	$pH = -\log[H^{+}] \qquad (\frac{1}{2})$ $2.0 = -\log[H^{+}] \qquad (\frac{1}{2})$ $[H^{+}] = 0.01 \text{ mol.dm}^{-3} \qquad (\frac{1}{2})$ $K_{a} = [H^{+}][B^{-}]/[HB] \qquad (\frac{1}{2})$ $7.2 \times 10^{-4} = (0.01)^{2}/[HB] \qquad (\frac{1}{2})$ $[HB] = 0.14 \text{ mol.dm}^{-3} \qquad (\frac{1}{2})$	3

			1/2 12 12 12 12 12 12 12 12 12 12 12 12 12	
21	a	$K_a = [CH_3COO^-][H^+]/[CH_3COOH]$	و القصريدي و القصارات وتقارات و لوقارة والاتكانات	ر من
		$1.7 \times 10^{-5} = 0.25 \times [H^+]/0.25$	(1/2)	<i>?}</i> //
		$[H^+] = 1.7 \times 10^{-5} \text{ mol.dm}^{-3}$	(1/2)	
		pH = - log [H+]	(½)	
		$= -\log(1.7 \times 10^{-5})$	(½)	
		= 4.8	(1/2)	
	b	Reaction 1 ('1mark)		2
		CH ₃ COO ⁻ from sodium ethanoate wi mop up the H ⁺ ions added from the ni		
22	a	As a reference point to measure the point different half cells.	otential E ⁰ (v) for	1
	b	$X: H_{2(g)}$ or $Hydrogen$ $Y: Pt or place HCl_{(aq)} or H^+_{(aq)}$	atinum electrode, Z	1½
	c	$2H^{+}_{(aq)}$, $H_{2(g)}$ Pt		1/2

Continue Question Two

Part	Section	The answer	<u>The</u> <u>mark</u>
23	a.i	FeSO4 (aq) 1M NiSO4(aq) 1M Note: any correct salt of Fe2+ and Ni2+ can be used and any correct salt in the salt bridge Each half cell (1 mark)	2
	a.ii	From (Fe) or iron to (Ni) or nickel.	1
	a.iii	The half-cell oxidation reaction: $Fe_{(s)} \longrightarrow Fe^{2+}_{(aq)} + 2e^{-}$ The half-cell reduction reaction: $Ni^{2+}_{(aq)} + 2e^{-} \longrightarrow Ni_{(s)}$ 1 mark for each correct half-cell	2
	b.	$E^{0} \text{ cell} = (+2.37) + (-1.66)$ $E^{0} \text{ cell} = 0.71 \text{ V}$	1
	c.	No (1mark) Zinc will be oxidized and Ni ²⁺ will be reduced or there will be a reaction between zinc and Ni ²⁺ because standard electrode potential of Ni ²⁺ is higher than of Zn ²⁺ or vice versa. (1mark)	2

This is the end of the Marking Guide